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When talking about nuclear reactor analysis with Monte Carlo method, physicists often 
fathomed that the simulated fission neutron random movements are tracked from the 
moment it is created during a fission event until its death. Such a direct simulation is 
done repeatedly for a large number of trials using a powerful computer. As a result, 
the statistical assemble of the simulated neutronic behaviour within a nuclear reactor 
can be observed. Particularly, the simulated neutronic behaviour is analysed by 
counting the number of neutrons occupying various regions within a nuclear reactor 
core. This information will finally form a spatial distribution of neutrons count over 
the entire reactor core. Traditionally, the spatial distribution of neutrons count is 
calculated by solving a specialised partial differential equation rather than simulating 
a large number of actual neutron movements. Here, the former technique is formally 
known as the deterministic method and the latter is known as the Monte Carlo method. 
Each of these techniques entails several pros and cons in terms of problem-solving 
capability. And of course, the Monte Carlo method is a formidable tool in nuclear 
reactor analysis due to its ability to simulate neutron movements in various 
complicated reactor core geometries.  

1.1 The Monte Carlo Neutron Transport Method 

At this level, it is convenient to briefly illustrate a simple Monte Carlo simulation of 
neutron movements within a typical system, say, a slab of fissile material. Among 
nuclear Monte Carlo physicists, such movements are recognized as neutron transport 
phenomenon. When a neutron travels from point A(𝑥𝐴, 𝑦𝐴, 𝑧𝐴) to point B(𝑥𝐵, 𝑦𝐵, 𝑧𝐵), 
one can alternatively say that the neutron is being transported from point A to point B.  
Initially, a Monte Carlo physicist will routinely provide an initial guess of fission 
source locations. Each of these locations will be the starting point (or sometimes 
termed as the birth location) of a simulated fission neutron created in the computer 
memory. Afterwards, a fission neutron batch size, say, 𝑀=106 is assigned and kept 
constant throughout the entire simulation. Subsequently, a queue which holds 𝑀=106 
fission neutrons awaiting to be simulated is created in the computer memory. Their 
birth locations are randomly picked from the initial guess of fission source locations 
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initialized beforehand. A fission neutron is chosen from the queue and simulated. 
Conventionally, the starting locations of these fission neutrons form a spatial 
distribution which is known as the fission source distribution. 

Fig. 1.1 depicts the random series of collisions of a fission neutron selected from 
the top of a queue. The neutron is programmatically ejected from its birth location at 
A and randomly transported within a slab of fissile material. Next, numbers between 
zero and unity are randomly generated by the computer. Later, these numbers are used 
to decide where the neutron collision takes place and what type of neutron-nucleus 
interaction occur at the collision location. Whether the neutron undergoes scattering 
reaction, or fission, or being captured by the nucleus at the collision site – it all depends 
on the fate dictated by the generated random numbers. And of course, these random 
choices are based on the rules of physics and probabilities represented by a quantity 
known as the neutron cross section. The value of the neutron cross section for various 
types of materials and reactions are gathered and stored in a formatted data file. Such 
a data file is commonly identified as a nuclear data file. A nuclear data file is provided 
by various organizations. For example,  ENDF (Evaluated Nuclear Data File) is 
provided by Los Alamos National Laboratory (LANL) (Chadwick et al., 2011) and 
JENDL (Japanese Evaluated Nuclear Data Library) is provided by Japanese Atomic 
Energy Agency (Igarasi, Nakagawa, Kikuchi, Asami, & Narita, 1979).  

 

 

Figure 1.1: Overview of Monte Carlo neutron transport simulation. 

 

Back to the neutron simulation, suppose the neutron collides at location B. After 
that, the neutron is scattered in the direction portrayed in Fig. 1.1. Plus, the scattering 
direction is randomly generated based on the physical scattering angle distribution. At 
collision point C, fission happens, ending in the death of the incoming neutron due to 
absorption and the birth of two outgoing fission neutrons. At this point, the simulation 
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is said to complete the first fission cycle of a single fission neutron. These two fission 
neutrons are not further tracked but they are saved in a new neutron queue for later 
tracking during the next fission cycle. This neutron history is now complete. The next 
neutron from the queue is ejected from its corresponding birth location and further 
tracked. This process continues until the neutron source queue is exhausted. As more 
histories are followed, the neutron distributions become favourably known. The 
quantities of interest, e.g. the neutron flux, track length or whatever the nuclear Monte 
Carlo physicist requests are tallied, simultaneously with the estimates of the statistical 
uncertainty of the tallies.  

The Monte Carlo method (Metropolis & Ulam, 1949) is employed to reproduce 
a theoretically statistical phenomenon such as the way neutrons interact with materials. 
It is effective for simulating complex problems that cannot be modelled by 
computational codes that implement the standard numerical method. In the Monte 
Carlo method, the discrete probabilistic events that consist of realistic processes are 
simulated sequentially. Traditionally, neutrons behaviour is predicted by solving an 
integrodifferential equation identified as the neutron transport equation (Lamarsh & 
Baratta, 1955).  The solution of the transport equation is the neutron flux distribution, 
which is a function of position, energy and time. The flux distribution is a useful piece 
of information in nuclear reactor analysis that enables nuclear engineers to design a 
practical and secure nuclear system. In the deterministic method, the neutron transport 
problem is solved using unique mathematical techniques, such as the Greens’ function 
method (Öztürk, Anli, & Güngör, 2006) and the collision probability method (Raghav, 
1977) (Lefvert, 1979). In contrast, the Monte Carlo method inherently ‘solves’ the 
neutron transport equation via the actual simulation of neutron random walk 
movements.  

1.2 Monte Carlo Codes for Nuclear Reactor Analysis 

A nuclear Monte Carlo code is a computer code that simulates nuclear processes, 
typically the way neutrons behave and move inside a nuclear reactor (Duderstadt & 
Hamilton, 1976). Recall that the example of such a simulation has been briefly 
described in the previous section. The execution of a reactor code produces 
information such as the stability of a nuclear reactor. It helps nuclear engineers to 
properly design and control the nuclear system. Most importantly, simulating the way 
neutrons behave in a reactor allows a nuclear Monte Carlo physicist to estimate the 
number of neutrons within the reactor. The number of neutrons in a particular reactor 
is proportional to the amount of fission power produced by the reactor. Essentially, the 
stability of a nuclear system is quantified using the multiplication factor, 𝑘. It assesses 
the rate of growth or decay of the total number of neutrons within the system. Briefly, 
the multiplication factor is defined as (Carter & Cashwell, 1975), 

 𝑘 =

the rate of neutron production via 
fission within the system

 the rate of neutron loss within the system
 (1.1)

To illustrate, an unstable nuclear system will have a typical value of 𝑘 > 1, which 
can inadvertently lead to an exponential and uncontrollable growth of neutron 
population within the system. This will then increase the possibility of inducing an 
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uncontrollable amount of fission reactions. Consequently, a tremendous amount of 
fission energy is tapped and thus causing a nuclear disaster such as Fukushima Dai-
ichi incident (Hirose, 2012) and Chernobyl incident (Beresford et al., 2016). 

In nuclear reactor analysis, there are two distinct types of nuclear code and they 
are the nuclear design code and the reactor core management code. The solving 
technique implemented in both codes can be categorized as the deterministic method 
or the Monte Carlo method. The purpose of a nuclear design code is to enable nuclear 
engineers to first design nuclear devices or even a nuclear reactor. Typically, a design 
code allows the user to define arbitrary geometries that compose of various different 
types of materials. For example, a design code can be used to design a radiation 
shielding wall (Cho et al., 2004) or even to study the production of weapons-grade 
plutonium (Glaser & Ramana, 2007) for military purpose. In contrast, a core 
management code is a code specifically designed for a particular nuclear reactor core. 
It allows nuclear engineers to make decisions on managing reactor core compositions 
such as fuel reshuffling, nuclear fuel replacements and allocation of various irradiation 
facilities inside the reactor core.  

Several examples of the deterministic code are TRIGLAV (Peršič et al., 2017) 
for generic TRIGA reactors, and APOLLO (Mathonniere & Stankovski, 1992) used 
by EDF Energy and Areva. Whereas some examples of the Monte Carlo nuclear 
system design code are MCNP by Los Alamos National Laboratory (LANL) (X-5 
Monte Carlo Team, 2005) and OpenMC by Massachusetts Institute of Technology 
(MIT) (Romano & Forget, 2013).  

Criticality calculation, or sometimes called the eigenvalue calculation, is a well-
known neutron transport simulation technique to determine the multiplication factor 
of a certain nuclear system (Duderstadt & Hamilton, 1976). Here, neutron productions 
via fission reaction are included in the simulation. Most nuclear design codes and core 
management codes have the capability of running criticality calculations. In a 
deterministic criticality code, a modified neutron transport equation called the 𝑘-
eigenvalue equation is solved and computed by various mathematical methods 
available (Duderstadt & Hamilton, 1976). Also, a deterministic code is 
computationally less expensive since there are no random processes involved. 
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