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CHAPTER 2 

NEUTRON TRANSPORT THEORY 

by M. R. Omar 

 
 
 
 
 
In a reactor core, neutrons move in complicated trajectories due to constant collisions 
with nuclei. Typically, these recurring collisions cause the neutron trajectories to appear 
to be zigzag. For instance, source neutrons were originated from their corresponding 
birth locations, 𝐫, moving with particular energy, 𝐸, and direction 𝛀. Afterwards, they 
appear at other positions, 𝐫′, at a later time. These neutrons could also change its energy 

and direction into 𝐸′ and 𝛀′, respectively after a collision at 𝐫′. In that sense, these 

neutrons are said to have been transported from the current state (𝐫, 𝐸, 𝛀) to the next 

subsequent state (𝐫 , 𝐸 , 𝛀 ). Correspondingly, the study of such a process is coined as 
the neutron transport theory. In this chapter, an exact equation which describes the 
neutron transport phenomena will be introduced. Such an equation is recognized as the 
neutron transport equation and the key objective of this study is to solve the equation. 
The readers will also be introduced with the basic concepts of the neutron transport 
theory before jumping into the battle of solving the equation. 

2.1 Neutron Density and Flux 

The central objective of this section is to familiarize the ways of counting the number 
of neutrons within a nuclear system. In this study, it is essential to understand the 
approach of characterizing neutrons within a medium.  To begin with, we define the 
neutron density, 𝑁(𝐫, 𝑡) 𝑑3𝑟, at a point 𝐫 ∈ ℝ3 within a reactor core and at time 𝑡, as the 
expected number of neutrons in the unit volume 𝑑3𝑟. It is convenient to characterize 

neutrons according to their energy, 𝐸, and direction, 𝛀, such that, 

 

 

𝛀 =
𝐯

|𝐯|
= 𝑢𝐞𝑥 + 𝑣𝐞𝑦 + 𝑤𝐞𝑧 

= sin 𝜃 cos 𝜃

𝑢

𝐞𝑥 + sin 𝜃 sin 𝜑

𝑣

𝐞𝑦 + cos 𝜃
𝑤

𝐞𝑧 (2.1) 
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where 𝐯 is the neutron velocity, 𝐞𝑥, 𝐞𝑦, 𝐞𝑧  are the basis vectors of the Cartesian 
coordinate, 𝜃 ∈ [0, 𝜋) and 𝜑 ∈ [0,2𝜋). Correspondingly, the zenith angle, 𝜃, and the 
azimuthal angle, 𝜑, are indicated in Fig. 2.1. Also, 

 √𝑢2 + 𝑣2 + 𝑤2 = 1 (2.2)

By referring to Fig. 2.1(a), consider a unit volume 𝑑3𝑟 containing a ‘mixture’ of 
neutrons with assorted energies and directions. One could possibly select the neutrons 
with a specific energy 𝐸 and direction 𝛀 from 𝑑3𝑟. Thus, the expected number of 

neutrons in 𝑑3𝐫 at position 𝐫, with energy 𝐸 about 𝑑𝐸, moving towards the direction 𝛀 

in solid angle 𝑑𝛀 at time 𝑡 is given by, 

 𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 𝑑𝐸 𝑑𝛀  (2.3) 

Note that the angular neutron density, 𝑛(𝐫, 𝐸, 𝛀, 𝑡), is introduced in Eq. (2.3). 

Subsequently, 𝑛(𝐫, 𝐸, 𝛀, 𝑡) is defined similarly as 𝑁(𝐫, 𝑡), however, the former 
considers the neutron energy and direction. In the neutron transport theory, it is 
convenient to express Eq. (2.3) in terms of the angular neutron flux, ψ(𝐫, 𝐸, 𝛀, 𝑡), 
where, 

 ψ(𝐫, 𝐸, 𝛀, 𝑡) = 𝑣 𝑛(𝐫, 𝐸, 𝛀, 𝑡) (2.4) 

where 𝑣 is the neutron speed (𝑣 = √2𝐸/𝑚n, 𝑚n is the neutron rest mass). The angular 
neutron flux has a unit of cm–2 s–1. Subsequently, the angular neutron current density 
is defined as, 

 𝐣(𝐫, 𝐸, 𝛀, 𝑡) = 𝛀 ψ(𝐫, 𝐸, 𝛀, 𝑡) (2.5)

Remark that 𝐣 is a vector quantity such that, 

 𝐣(𝐫, 𝐸, 𝛀, 𝑡) ⋅ 𝑑𝐀 𝑑𝐸 𝑑𝛀   (2.6)

 
(a) (b) 

Figure 2.1: (a) The neutron density, 𝑁(𝐫, 𝑡); and (b) the direction variables 
characterizing a neutron. 
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 is defined as the net rate at which neutrons with energy 𝐸 about 𝑑𝐸 and direction 𝛀 in 

𝑑𝛀 crossing a unit area 𝑑𝐴 at time 𝑡. In certain circumstances, it is favourable to express 
Eqs. (2.4) and (2.5) without considering the neutron direction, thus, 

 𝜙(𝐫, 𝐸, 𝑡) = ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝛀
4𝜋

 (2.7)

and, 

 𝐉(𝐫, 𝐸, 𝑡) =  𝐣(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝛀
4𝜋

 (2.8) 

where the integration is taken over the entire solid angle, 𝑑𝛀, i.e. [0, 4𝜋). At this time, 
the quantity 𝐉 is now defined as the neutron current density, where, 

 𝐉(𝐫, 𝐸, 𝑡) ⋅ 𝑑𝐀 (2.9) 

is the net rate at which neutrons with energy 𝐸 pass through a surface area 𝑑𝐀. Note 
that the units of both 𝐉 and 𝜙 are equivalent i.e. cm–2 sec–1. However, 𝐉 is a vector 
quantity characterizing the net rate at which neutron flow through a surface, 𝑑𝐀, 
oriented in a given direction, 𝑑𝐀/|𝑑𝐀|. Whereas 𝜙 characterizes the total rate at which 
neutrons pass through an area, regardless of its orientation. Thus, 𝐉 is a more convenient 
quantity to describe neutron leakage from a system such as a nuclear reactor core. 

2.2 Neutron Cross Sections 

In the neutron transport theory, the concept of neutron cross section is one of the central 
aspects that determine neutron behaviour within a system. It conveys the likelihood of 
an interaction between an incident neutron and a target nucleus to occur (Lamarsh & 
Baratta, 1955). Intentionally, consider a stream of incident neutrons travels through the 
material within a nuclear reactor. Intuitively, there is a probability that a fraction of 
these neutrons interacts with the nuclei of the material. The physical quantity that 
expresses the likelihood of a neutron-nuclear interaction is known as the microscopic 
neutron cross section, 𝜎(𝐫, 𝐸). Here, 𝜎(𝐫, 𝐸) is a function of the neutron position, 𝐫, 
and the incident neutron energy, 𝐸. The former indicates that the 𝜎 is dependent on the 
material properties. Respectively, its value varies across the distinct parts of the reactor 
core region. Whereas, the latter indicates that the value of 𝜎 also varies according to the 
incident neutron energy. Moreover, the larger the value of 𝜎, the greater the possibility 
of a neutron-nucleus interaction characterized by 𝜎 to occur. Also, 𝜎 has a unit of cm–2 
or “barn” (×10–24 cm–2). 

There is also another form of neutron cross section that considers the likelihood 
of interaction between an incident neutron and a target nucleus in a chunk of material 
instead of an individual atom. It is known as the macroscopic neutron cross section, 
Σ(𝐫, 𝐸). Formally, Σ(𝐫, 𝐸) is defined as the probability of a neutron interaction to 
happen per unit path length travelled by the neutron. Also, Σ(𝐫, 𝐸) has a unit of cm–1 
and the relationship between Σ(𝐫, 𝐸) and σ(𝐫, 𝐸) is given by, 

 Σ(𝐫, 𝐸) = 𝑁𝐷𝜎(𝐫, 𝐸) (2.10) 

where 𝑁𝐷 is the number of atoms of the material per unit volume or simply called as 
the number density. Equally important, there are various types of neutron-nuclear 
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interactions. These interactions include neutron capture, scattering, fission, and etc. It 
is now convenient to introduce the microscopic total neutron cross section, 𝜎t(𝐫, 𝐸), 

 𝜎t(𝐫, 𝐸) = 𝜎𝑗(𝐫, 𝐸)

𝑚

𝑗=1

 (2.11)

and similarly, the macroscopic total neutron cross section, Σt(𝐫, 𝐸), 

 

Σt(𝐫, 𝐸) = Σ𝑗(𝐫, 𝐸)

𝑚

𝑗=1

 

= 𝑁𝐷 𝜎𝑗(𝐫, 𝐸)

𝑚

𝑗=1

 

(2.12)

where 𝑚 is the total number of different types of neutron-nucleus interaction with the 
summation index, 𝑗, representing the different types of interaction. 

2.3 Double-differential Scattering Cross Sections 

Essentially, 𝜎(𝐫, 𝐸) does not conveys the probability of a neutron to possess the 

outgoing energy, 𝐸 , and the outgoing direction, 𝛀 , after an interaction event. For 
instance, scattering reaction is a type of interaction that changes the incident neutron 
energy and direction, i.e. (𝐸, 𝛀), into a new set of energy and direction, i.e. (𝐸 , 𝛀 ). 
Thus, the likelihood of a scattering reaction that causes the change in neutron energy 
and direction (𝐸, 𝛀) into (𝐸 , 𝛀 ) is expressed in term of 𝜎s

(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ). At 

this point, 𝜎s
(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) is known as the microscopic double-differential 

scattering cross section. Now, the dependency of 𝜎s on the incident neutron direction, 

𝛀, is usually neglected because the nuclei in any material are usually randomly oriented. 
Consequently, when all possible nuclear orientations are considered, the dependency of 
𝜎s on 𝛀 averages out. 

Crucially, the relationship between 𝜎s(𝐫, 𝐸) and 𝜎s
(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) is given 

by, 

 𝜎s(𝐫, 𝐸) = 𝜎s
(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) 𝑑𝐸

∞

0

𝑑𝛀
4𝜋

 (2.13)

Likewise, the property in Eq. (2.10) can also be applied to obtain the macroscopic 
double-differential scattering cross section, 

 Σs(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) = 𝑁𝐷𝜎s(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ). (2.14) 

In addition, both microscopic and macroscopic double-differential cross sections do not 
depend on the incident neutron direction. However, they depend on the scattering angle, 
𝛼, which is the angle between 𝛀 and 𝛀 . It is convenient to express the change in the 
neutron direction in terms of the scattering cosine, 𝜇0, 

 𝜇0 = 𝛀 ⋅ 𝛀 = cos 𝛼 (2.15)

Finally, one may also express the macroscopic double-differential scattering cross 
section in terms of 𝜇0, 
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 Σs(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) ≡ Σs(𝐫, 𝐸 → 𝐸 , 𝛀 ⋅ 𝛀 ) 
≡ Σs(𝐫, 𝐸 → 𝐸 , 𝜇0) 

(2.16) 

2.4 Neutron Interaction Rate 

Ideally, we begin introducing the reaction rate density, 𝑅, which is defined as the 
expected number of neutron-nucleus interactions that occur per unit volume and per 
unit time. Subsequently, the expected number of interactions per second, 𝑓 , experienced 
by a neutron moving with an average speed of 𝑣 within the material is given by, 

 𝑓 = 𝑣Σ(𝐫, 𝐸) (2.17)

Thus, the total reaction rate density of a type of interaction in a volume 𝑑3𝑟 caused by 

an incident neutron with energy and direction (𝐸, 𝛀) at position 𝐫 and time 𝑡 is given 
by, 

 
𝑅(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 = 𝑓 ×  𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

= 𝑣 Σ(𝐫, 𝐸) 𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

= Σ(𝐫, 𝐸) ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

(2.18) 

The similar concept also relevant to the scattering reaction, where the expected number 
of scattering reactions that changes the energy and direction of a neutron from (𝐸, 𝛀) 

into (𝐸 , 𝛀 ) is given by, 

 𝑅(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 = Σs(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 )ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 (2.19) 

2.5 Neutron Transport Equation 

Principally, the neutron transport theory uncovers the distribution of neutrons in a 
system. The theory considers the movement of neutrons and the way they interact with 
the materials contained in the system. The distribution of neutrons in a system, typically 
in a reactor core, can be obtained by solving the neutron transport equation. One can 
derive the neutron transport equation by balancing various mechanisms that cause gain 
or loss of neutrons within a system.  

At this instance, it is appropriate to begin deriving the neutron transport equation 
by considering the rate of change of the neutron density, 𝑛(𝐫, 𝐸, 𝛀, 𝑡) within an 
infinitesimal volume, 𝑑3𝑟, 

 

 
𝜕

𝜕𝑡
𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟  =

1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

= 𝑅+ − 𝑅− 
(2.20)

where 𝑅+ is the total rate of interactions that cause the gain of neutrons in 𝑑3𝑟, and 𝑅− 
is the total rate of interactions that cause the loss of neutrons in 𝑑3𝑟. 
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2.5.1 Neutron Loss via Net Leakage 

At first, consider a few neutron currents, 𝛀ψ, entering and leaving an infinitesimal 
volume 𝑑3𝑟 of a material through the surface 𝑆 which defines the boundary of 𝑑3𝑟. In 
essence, the difference between the rate of neutrons entering and leaving 𝑑3𝑟 through 
𝑆 is equal to the resulting neutron leakage rate, 
 

 

Net
Leakage = 𝐣(𝐫, 𝐸, 𝛀, 𝑡) ⋅ 𝑑𝐒

𝑆

 

= 𝛀 ψ(𝐫, 𝐸, 𝛀, 𝑡) ⋅ 𝑑𝐒
𝑆

 
(2.21) 

Here, Gauss’ theorem of vector calculus can be applied, and Eq. (2.21) will reduce into,  

 

Net
Leakage = 𝛁 ⋅ 𝛀ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟  

= 𝛀 ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟  
(2.22) 

2.5.2 Neutron Loss via Disappearance Interactions 

Suppose an incident neutron collides with a nucleus in an infinitesimal volume 𝑑3𝑟. 
Naturally, there is a possibility that an interaction that causes the disappearance of the 
neutron to occur. If such a disappearance interaction is possible, the neutron is 
considered loss from 𝑑3𝑟. For example, during a neutron capture interaction e.g. (n, 𝛾) 
reaction and (n, 𝛼) reaction, an incident neutron is absorbed by the nucleus. 
Consequently, a secondary particle, e.g. 𝛾-ray or 𝛼-particle, is released as the product 
of the reaction. Relevantly, scattering reaction is equally considered as a disappearance 
interaction. In scattering reaction, an incident neutron with the energy and direction 

(𝐸, 𝛀) is considered lost whilst a new secondary neutron with the energy and direction 

(𝐸 , 𝛀 ) is ejected from the nucleus. When a stream of neutrons with energy 𝐸 and 

direction 𝛀 travel through 𝑑3𝑟, the rate of neutron loss in 𝑑3𝑟 due to disappearance 
reactions is given by, 

 Total
loss rate

= Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 . 
(2.23) 

Conveniently, all reactions at the collision site are considered as disappearance 
reactions, thus the total macroscopic neutron cross section is incorporated in Eq. (2.23). 

2.5.3 Neutron Gain via In-Scattering 

Recall that in the neutron transport theory, neutrons are characterised according to their 
energy and direction, i.e. (𝐸, 𝛀). In this section, our objective is to analyse the expected 

number of neutrons with energy and direction (𝐸, 𝛀) that appear in an infinitesimal 



7 
 

volume, 𝑑3𝑟, due to in-scattering. The term “in-scattering” is coined to indicate the 

interaction where an incident neutron with any energy and direction, (𝐸 , 𝛀 ), are 

scattered into the energy and direction of interest, (𝐸, 𝛀). For generalization purpose, 
the neutron in-scattering accounts all types of scattering interaction, e.g. elastic 
scattering, inelastic scattering, potential scattering, etc.  

Most importantly, the gain rate of neutrons with energy and direction (𝐸, 𝛀) in 

𝑑3𝑟 due to in-scattering of an incident neutron with energy and direction (𝐸 , 𝛀 ) is 
given by, 

 Total in-
scattering

rate
= Σs

(𝐫, 𝐸 → 𝐸, 𝛀 → 𝛀) ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑3𝑟  (2.24)

Equally important, to obtain the total neutron gain rate via in-scattering, the sum of the 
contributions of all incident neutron energies,  𝐸 , and directions, 𝛀 , are considered, 

 

Total in-
scattering

rate
= Σs

(𝐫, 𝐸 → 𝐸, 𝛀
∞

04𝜋

→ 𝛀) ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸 𝑑𝛀′ 𝑑3𝑟 . 

(2.25)

2.5.4 Neutron Gain via Fission 

Undeniably, fission reaction is the most important neutron-nucleus interaction that 
drives the power generation in a nuclear reactor core. A typical nuclear fission reaction 
such as 

n + 𝑈92
235 → 𝑈 ∗

92
236 → fission products 

ejects out a mixture of reaction products, including the daughter nuclei and several 
fission neutrons plus numerous gammas, betas, and neutrinos. The fission fragment 
nuclei generated by the fission reaction are both highly charged and remarkably high in 
energy. They slow down through collisions with neighbouring nuclei and dissipating 
energy during the process. This is, in reality, the primary mechanism by which the 
fission energy finally appears as heat formed in the fuel material. 

Equally important, several neutrons are also produced during the fission reaction. 
These neutrons can be utilised to breed a fission chain reaction. Majority of these fission 
neutrons are produced promptly (within 10-14 sec) of the fission event and these neutrons 
are attributed to as prompt (Duderstadt & Hamilton, 1976). Nevertheless, less than 1% 
of the neutrons produced appear with an apparent time delay from the subsequent decay 
of radioactive fission products. These delayed neutrons are essential for the practical 
control of the fission chain reaction. Essentially, the total number of neutrons released 
in a fission reaction will fluctuate from one reaction to another. However, the average 
number of neutrons released per fission, 𝜈, is of greater concern. This quantity depends 
on both the nuclear isotope involved and the incident neutron energy. In general, 𝜈 tends 
to increase with increasing incident neutron energy (Duderstadt & Hamilton, 1976; 
Lamarsh & Baratta, 1955). 

In particular, fission neutrons are ejected with a distribution of energies, with the 
average energy being about 2 MeV. Such a distribution will primarily depend on the 
fissionable isotope involved. The energy distribution may also depend on the incident 
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neutron energy and will vary for prompt and delayed neutrons. It is convenient to 
introduce the fission spectrum, 𝜒(𝐸), which is defined as the probability of having a 
fission neutron ejected with energy 𝐸 as a result of a fission reaction.  

Presume that 𝜈(𝐸 ) is the average number of neutrons produced per fission 
induced by an incident neutron with energy 𝐸 . Then, the total fission rate at which 
fission neutrons are generated in an infinitesimal volume 𝑑3𝑟 is given by, 

 
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸

∞

0

𝑑𝛀′
4𝜋

𝑑3𝑟. 
(2.26) 

Since we are only interested in knowing rate of fission reaction causing the birth of the 
fission neutrons with energy 𝐸 and direction 𝛀, thus, Eq. (2.26) can be modified into, 

 𝜒(𝐸)𝑃 (𝛀) 𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸
∞

0

𝑑𝛀′
4𝜋

𝑑3𝑟 (2.27)

where 𝑃 (𝛀) is the probability of having a fission neutron ejected towards the direction 

𝛀. If the fission neutrons are anticipated to get emitted isotropically, then 𝑃 (𝛀) is 
simply the inverse of all possible solid angles subtended by a fission neutron, i.e. 4𝜋. 
Finally, the fission term of the transport equation is defined as the rate of fission neutron 
appearing in (𝐸, 𝛀): 

  

Fission
rate

=
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸

∞

0

𝑑𝛀′ 
4𝜋

𝑑3𝑟. 
(2.28) 

2.5.5 The Differential Form of Neutron Transport Equation 

At this point, all of the general interaction rate equations that describe the neutron gain 
and loss mechanisms in 𝑑3𝑟 have been expressed. The neutron transport equation can 
be derived by rewriting Eq. (2.20) in terms of the net rate of neutrons appearing in 

(𝐸, 𝛀) and net rate of neutrons loss from (𝐸, 𝛀), 

 

1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟

= −
Net

Leakage
rate

−
Total
loss 
rate

+
Total in-
scattering

rate

+ Fission
rate

 

(2.29) 

To proceed further, Eqs. (2.22), (2.23), (2.25) and (2.28) are substituted into Eq. (2.29). 
Finally, the volume integrals over the whole 𝑑3𝑟 are cancelled off, and the final form of 
the neutron transport equation is given by, 
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1

𝑣

𝜕ψ

𝜕𝑡
+ 𝛀 ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀, 𝑡) + Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀, 𝑡) 

= Σs(𝐫, 𝐸 → 𝐸, 𝛀 → 𝛀)ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸
∞

0

𝑑𝛀′ 
4𝜋

 

+
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸

∞

0

𝑑𝛀′ 
4𝜋

 

(2.30)

Alas, solving Eq. (2.30) is rather difficult. It is necessary to simplify the form of Eq. 
(2.30) before any attempts are made to solve it. One of the well-known simplification 
methods is via the neutron diffusion approximation. Such an approximation is an 
essential part in reactor theory since it is adequately uncomplicated to enable detailed 
calculations. The model is sufficiently realistic to provide many more significant 
concepts arising in the nuclear reactor analysis. The next chapter will focus on the 
establishment of an approximate representation of the neutron transport equation, which 
is much easier to work with. 
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