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Presume that one wishes to sustain a stable fission chain reaction and thereby reach a 
steady rate of fission energy production. Therefore, one must design a nuclear reactor 
in such a way that the rates of neutron absorption and leakage are compensated by the 
rate of fission neutron production. In this chapter, the multigroup method will be 
introduced to simplify and reduce the general transport equation into the multigroup 
equations. Then, readers will be presented with the most vital calculation in reactor 
physics, that is, the criticality calculation. At this point, the criticality calculation of a 
nuclear system will allow us to evaluate the stability of the fission chain reaction. At 
the end of this chapter, the alternative form of the time-independent multigroup 
diffusion equations will be established. Also, these equations form a matrix expression 
which is known as the k-eigenvalue equation and it will be used to accomplish a 
criticality calculation. Briefly, a criticality calculation at first gathers all parameters 
related to the reactor design, nuclear fuel properties and the reactor core configuration. 
At the end of the calculation, nuclear engineers will be able to quantitatively estimate 
the stability of the reactor using the multiplication factor, 𝑘. 

3.1 Interaction Probability 

Consider a monodirectional and monoenergetic neutron beam with energy 𝐸 is 

targeted along the direction 𝛀ල  towards a material of thickness 𝑅, with an initial beam 
flux magnitude 𝜙0. Also, the region outside the material is considered vacuum, and a 
neutron detector is placed at some distance behind the material. Hence, every neutron 
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that interacts in the material is lost from the beam and leaving only neutrons that do 
not interact to reach the detector.  

 

 

Figure 3.1: Measurement of neutrons that have not interacted with the target. 

 

At this instance, it is convenient to define 𝜙(𝑟) as the flux of the neutron beam 
after penetrating the distance 𝑟 into the material. After travelling at an additional 
distance 𝑑𝑟, the decrease of the flux is given by, 

 −𝑑𝜙(𝑟) = Σt(𝑟) 𝜙(𝑟) 𝑑𝑟 (3.1)

Assuming that the target material is homogeneous, and henceforth, the total neutron 
cross section is constant at all locations within the material, 

 −𝑑𝜙(𝑟) = Σt  𝜙(𝑟) 𝑑𝑟 (3.2) 

The probability of neutrons that will subsequently interact in the next additional 
distance 𝑑𝑟 after penetrating the material at the distance 𝑟 is given by 𝑃1, 

 𝑃1(𝑟) =
𝑑𝜙(𝑟)

𝜙(𝑟)
 (3.3) 

Hence, rearranging Eq. (3.2) and substituting into Eq. (3.3) yields, 

 𝑃1(𝑟) = −Σt  𝑑𝑟 (3.4) 

Solving the separable differential equation in Eq. (3.2) yields, 

 𝜙(𝑟) = 𝜙0𝑒−Σt𝑟  (3.5)

The probability of the neutrons to penetrate the material until the distance 𝑟 without 
any interactions is given by 𝑃2, 

 𝑃2(𝑟) =
𝜙(𝑟)

𝜙0

= 𝑒−Σt𝑟  (3.6) 
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Next, the probability of a neutron to have its first interaction in the distance 𝑑𝑟, 𝑃 (𝑟), 
is given by, 

 𝑃 (𝑟) = 𝑃1(𝑟) × 𝑃2(𝑟) = Σ𝑡𝑒
−Σt𝑟 𝑑𝑟 (3.7)

Finally, the probability density function of the distance to the next interaction, 𝑝(𝑟), is 
given by, 

 𝑝(𝑟) = Σt𝑒
−Σt𝑟 (3.8)

3.2 Fick’s Law 

As pointed out in the previous section, solving the neutron transport equation is rather 
cumbersome. However, it is possible to impose certain conditions so that the neutron 
flux, 𝜙, and current, 𝐉, are related in a simple way. Thus, the relation can be used to 
simplify the complicated form of the transport equation which will ease the process of 
solving the equation. Now, it is practical to derive the relationship between 𝜙 and 𝐉 by 
calculating the neutron current density at any location within a medium. 

 

Figure 3.2: An illustration for deriving Fick’s law. 

The location at which the neutron current density is calculated is defined to be 
the origin of a coordinate system shown in Fig. 3.2. Most importantly, the three vector 
components of 𝐉 must be evaluated. It is convenient to begin with 𝐽𝑧 and consider the 
rate at which neutrons flow through the area 𝑑𝐴𝑧 spanning over the 𝑥𝑦-plane at the 
origin. Note also that there are no neutron sources exist in the medium. 
Correspondingly, all neutrons that pass through 𝑑𝐴𝑧 have just arrived from a scattering 
collision. Equally important, all scattering collisions that occur above the 𝑥𝑦-plane will 
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always cause some of the outgoing neutrons to flow downward through 𝑑𝐴𝑧 and vice 
versa.   

At this point, it is useful to begin calculating the number of scattering collisions 
that occur per second in the volume element 𝑑𝑉  at point 𝐫. By using the theorems 
explained in Section 2.4, one can deduce that this number is equal to 

 Σs𝜙(𝐫) 𝑑𝑉  (3.9)

Based on the assumption that the scattering process is isotropic in the laboratory frame 
of reference, the fraction of outgoing neutrons that are scattered in the direction of 𝑑𝐴𝑧 
is given by 

 
𝑑𝐴𝑧 cos 𝜃

4𝜋𝑟2
 × Σs𝜙(𝐫) 𝑑𝑉 (3.10) 

Inescapably, a fraction of these scattered neutrons will not succeed in reaching 𝑑𝐴𝑧 
where they are absorbed en route. As discussed in the previous section, the fraction of 
neutrons which able to reach 𝑑𝐴𝑧 per second is given by, 

 
𝑑𝐴𝑧 cos 𝜃

4𝜋𝑟2
 × Σs𝜙(𝐫) 𝑑𝑉 × 𝑒−Σt𝑟 (3.11) 

At this instance, the 𝑧-component of neutron current density, 𝐽𝑧 is just the integral of 
the fraction given by Eq. (3.11) divided by 𝑑𝑆𝑧 over the entire volume. With 𝑑𝑉  
written in spherical coordinates, where, 𝑑𝑉 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜑, thus, 

 𝐽𝑧 =
Σs

4𝜋 ඘ ඘ ඘
 𝜙(𝐫) 𝑒−Σt𝑟 cos 𝜃 sin 𝜃  𝑑𝜑 𝑑𝜃 𝑑𝑟

2𝜋

𝜑=0

𝜋

𝜃=0

∞

𝑟=0

 (3.12) 

At this point of calculation, much of the attention was given to the 𝑧-component 
of 𝐉, where it is expressed in terms of the equivalent spherical coordinates. Most 
importantly, the orientation of the spherical coordinate system is symmetric, thus, the 
form of the right-hand side of Eq. (3.12) also applies to the 𝑥-component and 𝑦-
component of 𝐉. Suppose that the component of interest is denoted with 𝜇 ∈ {𝑥, 𝑦, 𝑧}. 
In general, the three components of 𝐉 in a Cartesian coordinate system can be written 
in the form of, 

 𝐽𝜇 =
Σs

4𝜋 ඘ ඘ ඘
  𝜙ඳ𝐫𝜇ප 𝑒−Σt𝑟 cos 𝜃𝜇  sin 𝜃𝜇 𝑑𝜑𝜇𝑑𝜃𝜇𝑑𝑟

2𝜋

𝜑𝜇=0

𝜋

𝜃𝜇=0

∞

𝑟=0

 (3.13) 

where 𝜃𝜇 and 𝜑𝜇 are the polar angle and the azimuthal angle respectively with the 
zenith of the spherical coordinate system lies along the 𝜇-axis of the Cartesian 
coordinate system.  

Alas, the integral in Eq. (3.13) cannot be evaluated because 𝜙(𝐫𝜇) is unknown. 
However, if 𝜙(𝐫𝜇) varies slowly with positions, it can be expressed in Taylor’s series. 
For the case where 𝑧-axis as the zenith of the spherical coordinate system (𝜇 ≡ 𝑧), the 
Taylor’s expansion of 𝜙(𝐫) is given by,  
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 𝜙(𝐫) = 𝜙0 + 𝑥 ෷
𝜕𝜙

𝜕𝑥෸0
+ 𝑦

ว
𝜕𝜙

𝜕𝑦ศ
0

+ 𝑧 ෷
𝜕𝜙

𝜕𝑧෸0
…   (3.14)

with 𝐫 = 𝑥𝐞𝑥 + 𝑦𝐞𝑦 + 𝑧𝐞𝑧, 𝑥 = 𝑟 sin 𝜃 cos 𝜑, 𝑦 = 𝑟 sin 𝜃 sin 𝜑 and 𝑧 = 𝑟 cos 𝜃. From Eq. 
(3.14), it is now clear that the similar form can be used for the other two components 
of 𝐉, i.e. 𝜇 ≡ 𝑥 and 𝜇 ≡ 𝑦. In general, it is useful to write  𝜙(𝐫𝜇) as, 

𝜙

=

𝜙0 + 𝑟 cos 𝜑 ෷
𝜕𝜙

𝜕𝑥෸0
+ 𝑟 sin 𝜃 cos 𝜑

ว
𝜕𝜙

𝜕𝑦ศ
0

+ 𝑟 sin 𝜃 sin 𝜑 ෷
𝜕𝜙

𝜕𝑧෸0
, 𝜇 ≡ 𝑥

𝜙0 + 𝑟 cos 𝜑
ว

𝜕𝜙

𝜕𝑦ศ
0

+ 𝑟 sin 𝜃 cos 𝜑 ෷
𝜕𝜙

𝜕𝑧෸0
+ 𝑟 sin 𝜃 sin 𝜑 ෷

𝜕𝜙

𝜕𝑥෸0
, 𝜇 ≡ 𝑦

𝜙0 + 𝑟 cos 𝜑 ෷
𝜕𝜙

𝜕𝑧෸0
+ 𝑟 sin 𝜃 cos 𝜑 ෷

𝜕𝜙

𝜕𝑥෸0
+ 𝑟 sin 𝜃 sin 𝜑

ว
𝜕𝜙

𝜕𝑦ศ
0

, 𝜇 ≡ 𝑧

(
3
.
1
5
)

Next, Eq. (3.15) is substituted in Eq. (3.14), and of course, it is found that the terms 
containing cos 𝜑 and sin 𝜑 will integrate to zero. Thus, 𝐽𝜇 reduces into, 

 

𝐽𝜇 =
Σs

4𝜋 ඘ ඘ ඘
  
ว

𝜙0

2𝜋

𝜑𝜇=0

𝜋

𝜃𝜇=0

∞

𝑟=0

+ 𝑟 cos 𝜑𝜇 ว
𝜕𝜙

𝜕𝜇ศ
0
ศ

 𝑒−Σt𝑟 cos 𝜃𝜇 sin 𝜃𝜇 𝑑𝜑𝜇𝑑𝜃𝜇𝑑𝑟 

(3.16) 

Hence, evaluating the definite integrals in Eq. (3.16) yields, 

 𝐽𝜇 = −
Σs

3Σt
2 ว

𝜕𝜙

𝜕𝜇ศ
0

. (3.17)

Finally, the vector 𝐉 is now, 

 

𝐉 = 𝐽 𝑥𝐞𝑥 + 𝐽𝑦𝐞𝑦 + 𝐽𝑧𝐞𝑧 

= −
Σs

3Σt
2

𝛁𝜙. (3.18)

In summary, Eq. (3.18) is known as Fick’s law, which states that the current density 
vector is proportional to the negative gradient of the flux. It is useful to define the 
proportionality constant 𝐷, which is known as the diffusion coefficient where, 

 𝐷 =
Σs

3Σt
2
 (3.19)

With this notation, Fick’s law can be written as, 

 𝐉 = −𝐷 𝛁𝜙. (3.20) 
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It should be noticed that the derivation of Fick’s law in this section is just a pre-
requisite of the construction of good knowledge and foundation for the research and 
development of a multigroup Monte Carlo method which will be discussed further in 
Chapter 4. Readers may find that in the Monte Carlo method, the transport behaviour 
of neutrons is determined stochastically without the use of Fick’s law, as in Eq. (3.20). 
Here, the diffusion of neutrons within a medium is reproduced via the computer 
simulation of neutron random walks. 

So far, much of the attention has been given to the derivation of Fick’s law. 
However, it is crucial to re-examine the conditions in which this law can be expected 
to be valid. There are a few assumptions made when deriving Fick’s law in reactor 
calculation. However, most of these assumptions can be relaxed because of some 
reasons that apply to nuclear reactor conditions. A detailed discussion of these 
assumptions is given by (Lamarsh & Baratta, 1955). However,  the diffusion 
approximation has to be strictly performed under a number of important assumptions: 

(a) The neutron diffusing medium must be infinite, to allow the integration of 
Eq. (3.13) over the entire space. Fortunately, the 𝑒−Σt𝑟 term in Eq. (3.13) dies 
off quickly with distance. Consequently, neutrons streaming from farther 
distances from the point where 𝐉 is calculated give fewer contributions to 𝐉, 
and their effect on the computation of 𝐉 is negligible. Thus, Fick’s law is still 
valid in the interior of a reactor, since the size of a reactor is exceptionally 
large compared to the diffusion distances of these neutrons. A problem may 
arise for the case near the outer surface of a reactor because there exists an 
abrupt change of the material cross section, i.e. between a dense medium (the 
interior of the reactor) and a vacuous medium (the outer region of the 
reactor). However, such an issue can be rectified by using a special treatment 
which is known as the reciprocal logarithmic derivative. A detailed 
reference of the special treatment is given by (Lamarsh & Baratta, 1955) and 
(Duderstadt & Hamilton, 1976). It should be noted that this issue is not 
applicable to Monte Carlo method since the neutron transport behaviour is 
simulated and purely based on statistical observations. 

(b) The neutron flux is a slowly varying function of position; the Taylor series 
of the neutron flux, 𝜙(𝐫), given by Eq. (3.15) is only expanded up to the first 
order. Hence, a rapid change of the neutron flux may compromise the 
accuracy of the calculation, since it can cause the higher spatial derivative 
terms of the Taylor expansion of 𝜙(𝐫) to be significant and cannot be 
neglected. 

(c) The neutron flux is a slowly varying function of time; In Eq. (3.13), the 
neutron flux is assumed to be independent of time.  Unfortunately, a neutron 
needs time to travel from the collision site to the location where 𝐉 is 
calculated. As previously discussed, only neutrons streaming from closer 
distances from the point where 𝐉 is calculated significantly contributes to 𝐉. 
So, the time taken for neutrons to travel at these close distances is negligible 
since neutrons travel at high speed. In a nuclear reactor, even the slowest 
neutrons travel at 1000m/s, thus this assumption can be relaxed.  
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3.3 Multigroup Method 

It is well understood that neutron energies typically encountered in a reactor span a 
range from 10–3 eV to 107 eV. Also, neutron cross sections depend sensitively on 
energy over most of this range (Duderstadt & Hamilton, 1976). In this section, the 
continuous neutron energy dependence will be suppressed by assuming that all 
neutrons can be characterized using a few discrete energy groups. Precisely, the 
continuous neutron energy range is divided into several energy group intervals. Plus, 
the energy boundaries of each group interval are defined prior to the neutronic 
calculation. Subsequently, each individual neutron energy group is assigned to a 
differential equation known as the group equation. Next, a sequence of one-group 
calculations for each successive energy group is performed.  

In the multigroup method, the entire continuous neutron energy within a specific 
thermal nuclear reactor is divided into 𝐺 energy groups. Suitably, the highest energy 
that can be attained by a neutron in a nuclear system is 𝐸0 = ∞. A neutron group is 
assigned with an index, 𝑔 ∈ {1,2,3, … , 𝑔 − 1, 𝑔, 𝑔 + 1, … , 𝐺 − 1, 𝐺} where it has a 
predefined neutron energy range covering from 𝐸𝑔 to 𝐸𝑔−1, where 𝐸𝑔−1 > 𝐸𝑔  . In this 
work, each neutron group is assigned to a pre-set energy boundary values given in 
Appendix A. To derive the diffusion equation for the energy group 𝑔, several group 
constants for the energy group need to be defined.  

Right now, it is favourable to simplify the neutron transport equation given by 
Eq. (2.30) using Fick’s law and the multigroup method. It is beneficial to go through 
each term of the neutron transport equation and simplify each of these terms 
accordingly. Consider a system, typically an infinitesimal volume 𝑑𝑉  of a 
homogeneous fissile material. To begin with, the energy variable in the neutron 
transport equation is eliminated by integrating Eq. (2.30) over the 𝑔th energy group 

defined within the energy range ඳ𝐸𝑔, 𝐸𝑔−1ප. Plus, the neutron direction, 𝛀ල , in the 
neutron transport equation can be eliminated by integrating the transport equation over 
the entire neutron directions, i.e. [0,4𝜋). Thus, 

 

඘ ඘
1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ

Time rate of change

+ 
඘ ඘

𝛀ල ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ

Streaming term

+
඘ ඘

Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ

Disappearance term

=
඘ ඘ ඘ ඘

Σs(𝐫, 𝐸າ → 𝐸, 𝛀ල າ → 𝛀ල)ψ(𝐫, 𝐸າ, 𝛀ල າ, 𝑡) 𝑑𝐸າ
∞

0

𝑑𝛀ල′ 
4𝜋

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ

In-scattering term

+
඘ ඘ ඘ ඘

𝜒(𝐸)

4𝜋
𝜈(𝐸າ)Σf (𝐫, 𝐸າ)ψ(𝐫, 𝐸າ, 𝛀ල າ, 𝑡) 𝑑𝐸າ

∞

0

𝑑𝛀ල′
4𝜋

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ

Fission term

 

(3.21)
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In addition, all integrations with respect to the neutron direction, 𝛀ල , over the entire 

solid angle, 4𝜋, will relax our focus on dealing with 𝛀ල . Remark that the study of the 
behaviour of neutrons regardless of its direction is in focus instead. 

Subsequently, several formal definitions of multigroup constants will be 
introduced. At this instance, the group flux, 𝜙𝑔, is defined as the flux integrated over 

the entire energy range defined for the group, 𝑔, i.e. ඳ𝐸𝑔, 𝐸𝑔−1ප 

 𝜙𝑔(𝐫, 𝑡) =
඘ ඘

ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල
4𝜋

. (3.22) 

The time rate of change term in Eq. (3.21) can be further simplified into, 

 
อ

Time rate 
of  change

of neutrons
ฮ

=
඘ ඘

1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋

 

=
1

𝑣𝑔

𝜕𝜙𝑔(𝐫, 𝑡)

𝜕𝑡
 

(3.23) 

where the inverse neutron speed characterizing group 𝑔 is given by 

 
1

𝑣𝑔

=
1

𝜙𝑔(𝐫, 𝑡) ඘ ඘
1

𝑣
ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋

 (3.24) 

Next, the streaming term in Eq. (3.21) can be further simplified in terms of the angular 
neutron current density, 𝐣(𝑟, 𝐸, 𝛀ල, 𝑡), via Eqs. (2.5), (2.6) and (2.7), 

 

 
඘ ඘

𝛀ල ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋

=  
඘ ඘

𝛁 ⋅ 𝛀ලψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋

=
඘ ඘

𝛁 ⋅ 𝐣(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀ල 
4𝜋

=
඘

𝛁 ⋅ 𝐉(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 

(3.25)

Since Fick’s law establishes the relationship between the flux and the current density, 
𝐉(𝐫, 𝐸, 𝑡) can be approximated by substituting Eq. (3.20) into Eq. (3.25), giving, 

 
඘

𝛁 ⋅ 𝐉(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

=
඘

𝛁 ⋅ ඳ−𝐷(𝐫, 𝐸)𝛁𝜙(𝐫, 𝐸, 𝑡)ප 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

  

= −𝛁 ⋅
඘

𝐷(𝐫, 𝐸) 𝛁𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 

 

(3.26)

With some simple mathematical manoeuvres, the group diffusion coefficient, 𝐷𝑔(𝐫, 𝑡), 
is defined as 
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 𝐷𝑔(𝐫, 𝑡) =
඘

𝐷(𝐫, 𝐸)𝛁𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

඘
𝛁𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 (3.27)

The group diffusion coefficient as defined in Eq. (3.27) permits us to write the 
multigroup net leakage term as, 

 ෽
Net

leakage෾ = −𝛁 ⋅ 𝐷𝑔(𝐫, 𝑡) 𝛁𝜙𝑔(𝐫, 𝑡) (3.28) 

Subsequently, the total macroscopic group cross section Σt
𝑔
(𝐫, 𝑡) is defined as 

 

Σt
𝑔
(𝐫, 𝑡) =

1

𝜙𝑔(𝐫, 𝑡) ඘ ඘
Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀ල, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 𝑑𝛀ල
4𝜋

 

=
1

𝜙𝑔(𝐫, 𝑡) ඘
Σ𝑡(𝐫, 𝐸)𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 

(3.29)

Therefore, the rate at which neutrons from energy group 𝑔 interacts with the 
homogeneous fissile material and disappear from the energy group 𝑔 (also known as 
the disappearance term) can be simply written as, 

 
อ

Group 
disappearance

term
ฮ

= Σt
𝑔
(𝐫, 𝑡) 𝜙𝑔(𝐫, 𝑡) (3.30)

Recall that some neutrons from other energy groups, 𝑔າ, will experience 
scattering collision with the homogeneous fissile material. Such a scattering collision 
changes the neutron energy, which also implies the change of the energy group. 
Consequently, some of these scattered neutrons will fall into group 𝑔, and this 
phenomenon is often coined as in-scattering. Of course, scattering collision can also 
remove neutrons from energy group 𝑔, which is termed as out-scattering. However, it 
is important to stress that the rate of out-scattering reaction has been included in Eq. 
(3.30) since it is equivalent to the removal of neutrons from energy group 𝑔. To this 
point, the macroscopic transfer group cross section is defined as 

 

Σs
𝑔ູ→𝑔

(𝐫, 𝑡)  =
1

𝜙𝑔ູ(𝐫, 𝑡) ඘ ඘ ඘
 
඘

Σs(𝐫, 𝐸າ → 𝐸, 𝛀ල າ
𝐸𝑔ູ−1

𝐸𝑔ູ4𝜋

𝐸𝑔−1

𝐸𝑔4𝜋

→ 𝛀ල)Ψ(𝐫, 𝐸າ, 𝛀ල າ, 𝑡) 𝑑𝐸າ 𝑑𝛀ල′ 𝑑𝐸 𝑑𝛀ල  

=
1

𝜙𝑔ູ(𝐫, 𝑡) ඘
Σs(𝐫, 𝐸າ → 𝐸)𝜙(𝐫, 𝐸າ, 𝑡) 𝑑𝐸າ

𝐸𝑔ູ−1

𝐸𝑔ູ

 

(3.31)

where 𝜙𝑔ູ
(𝐫, 𝑡) is defined similarly according to Eq. (3.22). Be aware of the special 

notation, i.e. 𝑔າ → 𝑔, where it indicates the transfer of neutrons from group 𝑔າ into 
group 𝑔. The in-scattering rate from energy group 𝑔າ into 𝑔 can be written as, 
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อ

Group 
in-scattering

term
ฮ

= Σs
𝑔ູ→𝑔

(𝐫, 𝑡) 𝜙𝑔ູ(𝐫, 𝑡) (3.32)

Of course, the contribution of the neutron in group 𝑔 is caused by the in-scattering of 
neutrons from all energy groups into the energy group 𝑔. Such a total contribution can 
be represented as the summation of the right-hand-side of Eq. (3.32) over the entire 
incident neutron energy groups, 𝑔າ = {1,2,3, … , 𝐺}. Thus, the total in-scattering rate 
can be written as, 

 

Σs
1→𝑔

(𝐫) 𝜙1(𝐫, 𝑡) + Σs
2→𝑔

(𝐫) 𝜙2(𝐫, 𝑡) + ⋯ + Σs
𝐺→𝑔

(𝐫) 𝜙𝐺(𝐫, 𝑡)

=
්

Σs
𝑔ູ→𝑔

(𝐫) 𝜙𝑔ູ(𝐫, 𝑡)

𝐺

𝑔ູ=1

 
(3.33)

So far, intense work on deriving the group flux, multigroup inverse neutron 
speed, multigroup streaming term, multigroup disappearance term and multigroup in-
scattering has been completed. In a fissile medium, one must include a mathematical 
term that accounts for the neutron production due to fission reaction in the neutron 
transport equation. Originally, such a mathematical term is the fission term which is 
given by Eq. (2.28). The multigroup form of the fission term can be derived by first 
considering the production rate of fission neutrons with energy 𝐸 and direction 𝛀ල  due 

to fission reactions induced by an incident neutron with energy 𝐸າ and direction 𝛀ල າ. 
This is given by, 

 𝑆f
(𝐫, 𝐸, 𝛀ල, 𝑡) =

𝜒(𝐸)

4𝜋 ඘
𝜈(𝐸າ)Σf (𝐫, 𝐸າ)ψ(𝐫, 𝐸າ, 𝛀ල າ, 𝑡) 𝑑𝛀ල′ 

4𝜋

  (3.34)

In the above equation, the integration with respect to 𝑑𝛀ල′ over the entire solid 

angle, 4𝜋, simply indicates that 𝑆f
(𝐫, 𝐸, 𝛀ල, 𝑡) considers all possible incident neutron 

directions. Bear in mind that it is assumed that the fission neutrons are emitted 
isotropically. Put differently, the probability of ejecting fission neutrons isotropically 
via fission caused by an incident neutron of any direction is equal. Suppose that 
isotropic fission is implied, the total birth rate of fission neutrons in energy group 𝑔 
cause by fission reactions induced by incident neutron regardless of their energy and 
direction is given by,  

 

𝑆f (𝐫, 𝐸, 𝑡) =
𝜒(𝐸)

4𝜋 ඘ ඘
𝜈(𝐸າ)Σf (𝐫, 𝐸າ)ψ(𝐫, 𝐸າ, 𝛀ල າ, 𝑡) 𝑑𝛀ල′ 

4𝜋

𝑑𝛀ල 
4𝜋

  

=
𝜒(𝐸)

4𝜋
𝜈(𝐸າ)Σf (𝐫, 𝐸າ)

඘
𝑑𝛀ල 

4𝜋 ඘
ψ(𝐫, 𝐸າ, 𝛀ල າ, 𝑡) 𝑑𝛀ල′ 

4𝜋

 

= 𝜒(𝐸)𝜈(𝐸າ)Σf (𝐫, 𝐸າ)𝜙(𝐫, 𝐸າ, 𝑡) 

(3.35)

where, 

 
඘

𝑑𝛀ල 
4𝜋

= 4𝜋 (3.36) 
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The multigroup form of 𝑆f (𝐫, 𝐸, 𝑡) can be derived by integrating it with respect 
to the incident neutron energy, 𝐸າ and the outgoing fission neutron energy 𝐸 over the 
entire energy range characterizing group 𝑔າ and 𝑔 respectively, 

 
඘

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑆f (𝐫, 𝐸, 𝑡)

=
඘ ඘

𝜒(𝐸)𝜈(𝐸າ)Σf (𝐫, 𝐸າ)𝜙(𝐫, 𝐸າ, 𝑡) 𝑑𝐸າ
𝐸𝑔ູ−1

𝐸𝑔ູ

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

  

(3.37)

To further simplify the group fission term given in Eq. (3.37), several group constants 
of the fission term are defined. The group fission spectrum is defined as, 

 𝜒𝑔 =
඘

𝜒(𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 (3.38)

and the group neutron production cross section is defined as, 

 𝜈𝑔ູΣ
f
𝑔ູ

=
1

𝜙𝑔ູ(𝐫, 𝑡) ඘
𝜈(𝐸າ)Σf (𝐫, 𝐸າ)𝜙(𝐫, 𝐸າ, 𝑡) 𝑑𝐸າ

𝐸𝑔ູ−1

𝐸𝑔ູ

  (3.39)

Consequently, Eq. (3.37) can be simplified into, 

 ඘
𝑆f (𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

= 𝜒𝑔𝜈𝑔Σ
f
𝑔ູ

(𝐫)𝜙𝑔ູ(𝐫, 𝑡) (3.40)

Correspondingly, the total production of fission neutrons in group 𝑔 can be obtained 
by considering the sum of the fission neutrons production induced by incident neutrons 
from all groups. Thus, using Eq. (3.40), the group fission term can be written as: 

 

 

อ

Group 
fission
term

ฮ
= 𝜒𝑔𝜈1Σf

1(𝐫)𝜙1(𝐫, 𝑡) + 𝜒𝑔𝜈2Σf
2(𝐫)𝜙2(𝐫, 𝑡) + ⋯

+ 𝜒𝑔𝜈𝐺Σf
𝐺(𝐫)𝜙𝐺(𝐫, 𝑡) 

= 𝜒𝑔 ්
𝜈𝑔ູΣ

f
𝑔ູ

(𝐫)𝜙𝑔ູ(𝐫, 𝑡)

𝐺

𝑔ູ=1

 

(3.41) 

Perhaps, the most direct way of deriving the multigroup neutron diffusion 
equation is to apply the concept of neutron balance to a given energy group. Base on 
this notion, the mechanisms in which neutrons enter and leave the energy group 𝑔 are 
balanced. Mathematically, the neutron balance equation can be written as, 
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Time rate
of  change of
neutrons in

group 𝑔

= − 

Change
due to

leakage
(Leakage term)

−

Disappearance
of neutrons

from group 𝑔
(Disappearance term)

+

Neutrons
scattering into

group g
(In-scattering term)

+

Appearance of
fission neutrons

in group 𝑔
(Fission Term)

 

(3.42) 

Now, Eqs. (3.23), (3.28), (3.30), (3.32) and (3.41) are substituted into Eq. (3.42), which 
will then yield the general form of the multigroup equations, 

 

1

𝑣𝑔

𝜕𝜙𝑔(𝐫, 𝑡)

𝜕𝑡
= −𝛁 ⋅ 𝐷𝑔(𝐫, 𝑡) 𝛁𝜙𝑔(𝐫, 𝑡) − Σt

𝑔
(𝐫, 𝑡) 𝜙𝑔(𝐫, 𝑡)

+
්

Σs
𝑔ູ→𝑔

(𝐫, 𝑡) 𝜙𝑔ູ(𝐫, 𝑡)

𝐺

𝑔ູ=1

+ 𝜒𝑔 ්
𝜈𝑔ູΣ

f
𝑔ູ

(𝐫, 𝑡)𝜙𝑔ູ(𝐫, 𝑡)

𝐺

𝑔ູ=1

 

𝑔 = 1,2,3, … , 𝐺 

(3.43)

Several remarks on these equations are essential and need be clearly stated 
before proceeding to the next step of reactor calculation. The general form of 
multigroup diffusion equations given in Eq. (3.43) are reasonably exact since the 
following group constants were introduced, 

Nevertheless, these group constants are still undetermined and need to be calculated. 
From the definitions of the group constants given by Eqs. (3.24), (3.27), (3.29), (3.31), 
(3.38) and (3.39), it is apparent that the flux 𝜙(𝐫, 𝐸, 𝑡) must be known prior to the 
calculation of the group constants. However, 𝜙(𝐫, 𝐸, 𝑡) is just the function that needs 
to be solved in the first place by discretizing the neutron energy into groups. This 
seems that the development of the multigroup method has been quite circular. Note 
also that the group constants are also dependent on the space and time which makes 
the problem even more cumbersome. Indeed, the group constants will be rigorously 
constant only if 𝜙(𝐫, 𝐸, 𝑡) is of the separable form, 

For such a scenario, the group constants will reduce to group averages over the flux 
energy spectrum 𝐺(𝐸). Alas, this is not the case in a nuclear reactor where the flux is 
usually not separable in energy. To rectify the problem, one may attempt to guess and 
approximate the intragroup flux characterizing each neutron energy group, i.e. 
𝜙(𝐫, 𝐸, 𝑡) ≅ 𝜙(̃𝐫, 𝐸, 𝑡). Hence, the group constants can be calculated by replacing 
𝜙(𝐫, 𝐸, 𝑡) with 𝜙(̃𝐫, 𝐸, 𝑡) in their corresponding mathematical definition. For example, 
the group total neutron cross section can be calculated as averages over these 
approximate intragroup fluxes, 

 
1

𝑣𝑔

, 𝐷𝑔, Σt
𝑔
, Σs

𝑔ູ→𝑔
, 𝜒𝑔, ν𝑔ູ, Σ

f
𝑔ູ

 

 𝜙(𝐫, 𝐸, 𝑡) = 𝐹 (𝐫, 𝑡)𝐺(𝐸) (3.44)
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 Σt
𝑔
(𝐫, 𝑡) =

1

𝜙𝑔(𝐫, 𝑡) ඘
Σt(𝐫, 𝐸)𝜙(̃𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 (3.45) 

with 

 𝜙𝑔(𝐫, 𝑡) =
඘

𝜙(̃𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

. (3.46)

In the next section, the strategy of approximating the flux 𝜙(𝐫, 𝐸, 𝑡) will be discussed 
in detail, and thus, the group constants can be directly calculated. 

3.4 Fine Group Constants 

Recall that in the previous section, intense work has been accomplished to simplify 
the neutron transport equation via multigroup diffusion method. Along the 
simplification process, several group constants were introduced. However, these group 
constants are still dependent on space, energy and time because their calculation 
requires the flux,  𝜙(𝐫, 𝐸, 𝑡), to be known beforehand. Unfortunately, the purpose of 
solving the transport equation is to compute the flux. Thus, the only way to rectify 
such issue is by first ignoring the space and time variation of the flux, i.e.,  
𝜙(𝐫, 𝐸, 𝑡)~𝜙(𝐸). Then, 𝜙(𝐸) is approximated with the intragroup fluxes – a weighing 
flux as a function of neutron energy characterizing each of the neutron energy group 
𝑔. Above all, one will be able to do very good multigroup calculations with only a few 
neutron energy groups provided that a good guess of the shape of 𝜙(𝐸) for a nuclear 
system is made.  

Since the nature of the neutron transport equation is separable in time, the flux 
𝜙(𝐫, 𝐸, 𝑡) can be written as 

As a result, group constants can be averaged over time. In general, the mathematical 
definitions of the group constants can be generally written as, 

where 𝐾  is the integral kernel which maps Eq. (3.48) into various type of group 

constants, i.e. 𝐾 ∈ ෽
1

𝑣(𝐫,𝐸)
, Σ𝑡(𝐫, 𝐸), Σ𝑠(𝐫, 𝐸າ → 𝐸), νΣ𝑓 (𝐫, 𝐸), ෾. Suppose that the 

flux is separable in time, it is convenient to eliminate the time variable in our group 
constants calculation, since, 

 𝜙(𝐫, 𝐸, 𝑡) = 𝐹 (𝐫, 𝐸)𝜏(𝑡) (3.47)

 Σ𝑔 =
඘

𝐾𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

඘
𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 (3.48)
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Also, from the definition of the group diffusion coefficient, 

Since Laplacian operator, ∇2, does not operate on the time variable, the definition of 
the group diffusion coefficient can be written as 

At this point, it is clear that the group constants are only dependent on position 
and energy. In the actual reactor calculation practice, one usually works with from two 
to 20 neutron energy groups. Such few group calculations are only reliable with 
reasonably accurate estimates of the group constants. Again, accurate estimates of the 
group constants can only be achieved if the intragroup fluxes, 𝜙(𝐸),  are accurately 
determined. The widely accepted strategy is to perform two multigroup calculations. 
In the first multigroup calculation, the spatial and time dependence is neglected or very 
crudely approximated, and a very finely structured multigroup calculation is 
performed to calculate the fine spectrum fluxes. The group constants for this fine 
spectrum calculation are usually pre-calculated and represented as a tabulated 
multigroup cross section data library. Furthermore, the group constants are averaged 
over each of the fine energy groups. An example of such a library is the IAEA WIMSD 
formatted data library. The IAEA WIMSD formatted data library offers 69 and 172 
fine group structures for nuclear reactor calculations. Fig. 3.3 shows the total cross 
section of U-235 in 69 and 172 fine energy groups. 

 

 

Σ𝑔 =  
඘

𝐾𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

඘
𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 

=
඘

𝐾𝐹 (𝐫, 𝐸) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

඘
𝐹 (𝐫, 𝐸) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 

(3.49)

 𝐷𝑔 =
඘

𝐷(𝐫, 𝐸)∇2𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

඘
∇2𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 (3.50) 

 𝐷𝑔 =
඘

𝐷(𝐫, 𝐸)∇2𝐹 (𝐫, 𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

඘
∇2𝐹 (𝐫, 𝐸) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 (3.51) 
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Figure 3.3: Multigroup neutron cross section plot for U-235. (Plot retrieved from 
International Atomic Energy Agency (IAEA) website, https://www-
nds.iaea.org/wimsd/xsplots.htm) 

 

 

Figure 3.4: An equivalent heterogeneous cell consisting of three different materials, 
i.e. fissile fuel (Σ1), fuel cladding (Σ2) and the coolant channel (Σ3), is homogenized. 
The heterogeneous cell is represented with an equivalent homogenized cell with the 
equivalent cross section Σeq. 

 

At first sight, a reactor core can be constructed using its basic lattice structures 
which are known as unit cells. The geometry of each of these unit cells is defined such 
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that the entire reactor core can be build using repetitions of these unit cells. For 
instance, the unit cells forming a reactor core are illustrated in Fig. 3.4. Essentially, the 
spatial dependence of the group constants reflects the fact that the geometry is 
heterogeneous which compose of discrete uniform material zones. Here, a 
heterogeneous unit cell is made up of a few separated regions of materials. To be more 
specific, a fuel cell consists of four different types of heterogeneous regions, i.e. the 
fuel meat, cladding material and the adjacent coolant channel. Note also that these 
heterogeneous regions are represented with specific group constants characterizing the 
material contained in each region.  

To suppress the spatial dependency of the group constants, the heterogeneous 
unit cell is replaced with an equivalent homogenized unit cell. Consequently, a 
homogenized unit cell is defined such that the separated regions are “mixed” thus 
preserving the integral neutron behaviour. In this context, neutron behaviour is a 
sequence of events where various neutron-nucleus interactions take place. Thus, after 
the homogenization process, a set of homogenized group constants characterizing the 
homogenized material within the unit cell is obtained. A detailed procedure to 
calculate the homogenized group constants for the case of a TRIGA reactor core will 
be discussed intensively in Chapter 4. 

3.5 Multiplication Factor 

Recall that in the previous section, the main working principle of a nuclear reactor is 
by tapping the energy released in fission reaction via the use of fission chain reaction. 
Such an essential idea is based on the fact that a fission neutron produced by the 
previous fission reaction will eventually induce another fission reaction. Thus, the 
neutrons that induce the fission reactions are known as the chain carriers. In normal 
nuclear engineering practice, it is desirable to ensure a steady-state chain reaction, 
which simply means a chain reaction that does not grow or decay away with time. 
Consequently, a nuclear engineer must design a reactor that is capable of inducing one 
fission reaction per fission neutrons produced by the previous fission reaction. Plus, 
certain factors that cause the fission chain reaction to degenerate have to be considered. 
Specifically, the remaining neutrons produced by the previous fission reaction could 
either be absorbed by means of disappearance reactions or will leak and escape out 
from the reactor.  

Such a neutron balance requirement can be expressed in mathematical form. To 
begin with, it is handy to consider the life cycle history of a single neutron. Essentially, 
the birth of a neutron usually begins as a result of a fission event. Then, the neutron 
will usually scatter for multiple times within the reactor region until it arrives at the 
point where its death or disappearance occurs. Also, some of the neutrons that were 
absorbed by fissionable nuclei will turn out inducing another fission reaction. This 
leads to the creation of a new generation of fission neutrons. Now, the quantity that 
describes the balance of neutrons within a nuclear reactor is known as the effective 
multiplication factor, which is defined as, 

 
𝑘eff ≡

Number of neutrons born in a reactor

Number of neutrons loss in a reactor
 

≡
Number of neutrons in generation 𝑗

Number of neutrons in previous generation 𝑗 − 1
 

(3.52)
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Note that if 𝑘eff = 1, the number of neutrons produced in a reactor is equal to the 
number of neutron loss in a reactor. Consequently, the number of neutrons in any two 
consecutive fission generations will be the same. Plus, the chain reaction will become 
time-independent. For the case when 𝑘eff < 1, there will be more neutron loss in the 
reactor since the denominator of Eq. (3.52) is larger than its numerator. Accordingly, 
the fission chain is expected to die off and the reactor is said to be in the state of 
subcritical. Finally, if 𝑘eff > 1, the chain reaction is expected to grow exponentially, 
since more fission neutrons are produced during each successive fission generation. 
Such a condition is coined as supercritical.  

In conclusion, the effective multiplication factor plays an extremely important 
role in assessing the stability of a nuclear reactor. The calculation of 𝑘eff  characterizing 
a specific reactor configuration and composition is often the main interest of most 
nuclear engineers. From this point, readers will find the rest of this book will be 
focusing on the development of various methods and procedures for performing this 
calculation.  

3.6 Reactor k-Eigenvalue Equation 

With the available knowledge of neutron transport, it is now suitable to determine the 
composition and size of a particular reactor so that the reactor is critical, i.e. 𝑘eff = 1. 
Such a determination is crucial in the reactor core designing and management process 
since nuclear engineers will always desire to have a self-sustaining (critical) and a 
constant power-producing nuclear reactor. Inevitably, the existence of the time 
derivative in the multigroup equation given by Eq. (3.43) indicates that the number of 
neutrons in nuclear reactors is not always balanced over time. In reality, the state of a 
nuclear reactor always fluctuates over time. Therefore, assessing the state of neutron 
balance in a particular nuclear reactor using the time-dependent transport equation is 
not practical. Plus, such a practice can cause difficulties during the process of 
designing a self-sustaining nuclear reactor. 

Practically, determining the criticality of a nuclear reactor with a specific 
geometry and composition requires the time-averaging of the neutron transport 
equation. Here, time-averaging simply means that the average reactor behaviour over 
time is observed instead. Note also that a time-averaged transport equation is often 
called the static eigenvalue equation.  One of the approaches to create a static 
eigenvalue equation is to force the time derivative of the transport equation 
(continuous form or multigroup form) to zero. Next, a scaling factor, 1 𝑘⁄ , on the fission 
term of the transport equation is introduced. To comprehend the reason behind the 
introduction of the scaling factor 1 𝑘⁄ , it is useful to first consider the multigroup 
diffusion equation given by Eq. (3.43). However, the time derivative of the multigroup 
diffusion equation is set to zero so that the equation is time-averaged and static. For 
this reason, 
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𝑔 = 1,2,3, … , 𝐺 

(3.53) 

Recall that the right-hand side of Eq. (3.53) indicates the gain of neutrons within 
the reactor and the left-hand side of Eq. (3.53) indicates the loss of neutrons from the 
reactor. Setting 𝜕𝜙𝑔 𝜕𝑡⁄ = 0 forces the net gain of neutrons to be equal with the net loss 
of neutrons from the reactor, and such condition only possible when the reactor is 
critical. As a result, Eq. (3.53) has no general solution, unless the exact combination 
of the core composition, geometry and group constants such that the reactor is critical 
is just happened to hit. The only way to alleviate this issue is to introduce the 1 𝑘⁄  factor 
to the fission term of Eq. (3.53). Henceforth, this will mathematically scale the fission 
term so that the equation satisfies for any reactor condition, even if the reactor core is 
not critical, i.e. subcritical or supercritical. Thus, 
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𝑔 = 1,2,3, … , 𝐺 

(3.54) 

For simplicity, an operator Tල is introduced such that, 

 
Tල𝑔𝜙𝑔 ≡ ඳ𝛁 ⋅ 𝐷𝑔 𝛁 + Σt

𝑔
ප𝜙𝑔 

= 𝛁 ⋅ 𝐷𝑔 𝛁𝜙𝑔 + Σt
𝑔
 𝜙𝑔 

(3.55)

Finally, Eq. (3.54) can be written into its equivalent matrix form: 

 

 

(3.56)
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It is also convenient to simplify the form of Eq. (3.56) by introducing several 
matrix operators, 𝐓, 𝐒 and 𝐅, such that 

 𝐓Φ = 𝐒Φ +
1

𝑘
𝐅Φ (3.57)

where, 

 𝐓 ≡ diagඳTල1, Tල2, … , Tල𝐺ප (3.58) 

 

 

(3.59) 

and 

 

 

(3.60) 

Also, the group flux vector, Φ, is given by, 

 Φ ≡ (𝜙1 𝜙2 … 𝜙𝐺)T (3.61)

Next, it is suitable to re-arrange Eq. (3.57) into, 

 (𝐓 − 𝐒)−1𝐅Φ = 𝑘Φ (3.62)

If the above matrix equation is carefully analysed, the operator (𝐓 − 𝐒)−1𝐅 is a square 
matrix, which has the dimension of 𝐺 × 𝐺. So, Eq. (3.62) is actually an eigen-equation 
with Φ, a column vector identified as the eigenvector and the scalar value 𝑘 as the 
eigenvalue. Recall that the whole point of neutron transport theory is to solve the 
neutron flux, which in this case the eigenvector Φ. Plus, the existence of the 
eigenvalue, 𝑘, in Eq. (3.62) allow nuclear engineers to use it as a tool for searching the 
right combination of reactor composition and geometry such that the reactor is critical.  

At this level, the readers might question on how to solve the eigen-equation in 
Eq. (3.62) so that Φ and 𝑘 are determined. One must also note that the reactor 
composition and geometry will change the characteristics of the square matrix operator 
(𝐓 − 𝐒)−1𝐅. Thus, solving the eigen-equation yields a specific value of 𝑘 and a specific 
group flux vector, Φ. Essentially, the solution of the eigenvalue problem given by Eq. 
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(3.62) can be accomplished by using the standard common technique in numerical 
analysis known as the power iteration method.  

Recall that in a nuclear reactor, neutrons serve as the fission chain reaction 
carrier. Additionally, a neutron from the previous generation may induce another 
fission reaction, creating neutrons of the next fission generation. To begin with, it is 
customary to introduce an integer denoting the current fission generation number, 𝑗. 
Firstly, notice that if the group flux vector of the neutron population from the previous 
fission generation, Φ(𝑗−1) is known, then it is possible to determine the group flux 
vector of the current fission generation, Φ(𝑗) using Eq. (3.62), where, 

 Φ(𝑗) =
1

𝑘(𝑗−1)
(𝐓 − 𝐒)−1𝐅Φ(𝑗−1) (3.63) 

Unfortunately, the true value of 𝑘 is unknown and the true group flux vector of the 
previous generation is not known. Consequently, the issue is resolved by estimating 
the initial guess of the group flux vector, Φ(0) and the initial guess of the effective 
multiplication factor, 𝑘(0). Thus, Φ(0) and 𝑘(0) are used to obtain Φ(1) using Eq. (3.63) 
whereas 𝑘(1) is estimated using an equation that will be derived later. This successive 
generation iteration continues until a sufficiently large number of iterations 𝑗 so that 
the Φ(𝑗) and 𝑘(𝑗) converge to their corresponding true value. The convergence of Φ(𝑗) 
and 𝑘(𝑗) can be proven mathematically. Throughout the iteration, the value of 𝑘(𝑗) and 
Φ(𝑗) are self-adjusted until the combination of these quantities satisfies the eigen-
equation in Eq. (3.63). Eventually, this successive generation iteration will guarantee 
to converge regardless of the value of Φ(0) and 𝑘(0) prescribed during the starting point 
of the iteration. For a large number of iterations,   

 Φ(𝑗) ≅
1

𝑘(𝑗)
(𝐓 − 𝐒)−1𝐅Φ(𝑗) (3.64)

Thus, if Eq. (3.64) is integrated over the entire space, it is reasonable to define the 
current estimate of the effective multiplication factor, 𝑘(𝑗) as, 

 𝑘(𝑗) ≅
඘

(𝐓 − 𝐒)−1𝐅Φ(𝑗)𝑑3𝑟

඘
1
1

Φ(𝑗) 𝑑3𝑟

 (3.65)

Finally, by using the above formula it is now possible to compute a new guess 
of the effective multiplication factor, 𝑘(𝑗). In summary, the iterative algorithm of 
finding the solution of the eigenvalue problem deterministically is given in Fig. 3.5. 
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Figure 3.5: The summary of power iteration algorithm. 
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