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CHAPTER 1 
AN OVERVIEW OF NUCLEAR MONTE CARLO 
 

 

 

 

 

 

 

When talking about nuclear reactor analysis with Monte Carlo method, physicists 
often fathomed that the simulated fission neutron random movements are tracked from 
the moment it is created during a fission event until its death. Such a direct simulation 
is done repeatedly for a large number of trials using a powerful computer. As a result, 
the statistical assemble of the simulated neutronic behaviour within a nuclear reactor 
can be observed. Particularly, the simulated neutronic behaviour is analysed by 
counting the number of neutrons occupying various regions within a nuclear reactor 
core. This information will finally form a spatial distribution of neutrons count over 
the entire reactor core. Traditionally, the spatial distribution of neutrons count is 
calculated by solving a specialised partial differential equation rather than simulating 
a large number of actual neutron movements. Here, the former technique is formally 
known as the deterministic method and the latter is known as the Monte Carlo method. 
Each of these techniques entails several pros and cons in terms of problem-solving 
capability. And of course, the Monte Carlo method is a formidable tool in nuclear 
reactor analysis due to its ability to simulate neutron movements in various 
complicated reactor core geometries.  

1.1 The Monte Carlo Neutron Transport Method 

At this level, it is convenient to briefly illustrate a simple Monte Carlo simulation of 
neutron movements within a typical system, say, a slab of fissile material. Among 
nuclear Monte Carlo physicists, such movements are recognized as neutron transport 
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phenomenon. When a neutron travels from point A(𝑥𝐴, 𝑦𝐴, 𝑧𝐴) to point B(𝑥𝐵, 𝑦𝐵, 𝑧𝐵), 
one can alternatively say that the neutron is being transported from point A to point 
B.  Initially, a Monte Carlo physicist will routinely provide an initial guess of fission 
source locations. Each of these locations will be the starting point (or sometimes 
termed as the birth location) of a simulated fission neutron created in the computer 
memory. Afterwards, a fission neutron batch size, say, 𝑀=106 is assigned and kept 
constant throughout the entire simulation. Subsequently, a queue which holds 𝑀=106 
fission neutrons awaiting to be simulated is created in the computer memory. Their 
birth locations are randomly picked from the initial guess of fission source locations 
initialized beforehand. A fission neutron is chosen from the queue and simulated. 
Conventionally, the starting locations of these fission neutrons form a spatial 
distribution which is known as the fission source distribution. 

 

 

Figure 1.1: Overview of Monte Carlo neutron transport simulation. 

 

Fig. 1.1 depicts the random series of collisions of a fission neutron selected from 
the top of a queue. The neutron is programmatically ejected from its birth location at 
A and randomly transported within a slab of fissile material. Next, numbers between 
zero and unity are randomly generated by the computer. Later, these numbers are used 
to decide where the neutron collision takes place and what type of neutron-nucleus 
interaction occur at the collision location. Whether the neutron undergoes scattering 
reaction, or fission, or being captured by the nucleus at the collision site – it all 
depends on the fate dictated by the generated random numbers. And of course, these 
random choices are based on the rules of physics and probabilities represented by a 
quantity known as the neutron cross section. The value of the neutron cross section 
for various types of materials and reactions are gathered and stored in a formatted data 
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file. Such a data file is commonly identified as a nuclear data file. A nuclear data file 
is provided by various organizations. For example,  ENDF (Evaluated Nuclear Data 
File) is provided by Los Alamos National Laboratory (LANL) (Chadwick et al., 2011) 
and JENDL (Japanese Evaluated Nuclear Data Library) is provided by Japanese 
Atomic Energy Agency (Igarasi, Nakagawa, Kikuchi, Asami, & Narita, 1979).  

Back to the neutron simulation, suppose the neutron collides at location B. After 
that, the neutron is scattered in the direction portrayed in Fig. 1.1. Plus, the scattering 
direction is randomly generated based on the physical scattering angle distribution. At 
collision point C, fission happens, ending in the death of the incoming neutron due to 
absorption and the birth of two outgoing fission neutrons. At this point, the simulation 
is said to complete the first fission cycle of a single fission neutron. These two fission 
neutrons are not further tracked but they are saved in a new neutron queue for later 
tracking during the next fission cycle. This neutron history is now complete. The next 
neutron from the queue is ejected from its corresponding birth location and further 
tracked. This process continues until the neutron source queue is exhausted. As more 
histories are followed, the neutron distributions become favourably known. The 
quantities of interest, e.g. the neutron flux, track length or whatever the nuclear Monte 
Carlo physicist requests are tallied, simultaneously with the estimates of the statistical 
uncertainty of the tallies.  

The Monte Carlo method (Metropolis & Ulam, 1949) is employed to reproduce 
a theoretically statistical phenomenon such as the way neutrons interact with 
materials. It is effective for simulating complex problems that cannot be modelled by 
computational codes that implement the standard numerical method. In the Monte 
Carlo method, the discrete probabilistic events that consist of realistic processes are 
simulated sequentially. Traditionally, neutrons behaviour is predicted by solving an 
integrodifferential equation identified as the neutron transport equation (Lamarsh & 
Baratta, 1955).  The solution of the transport equation is the neutron flux distribution, 
which is a function of position, energy and time. The flux distribution is a useful piece 
of information in nuclear reactor analysis that enables nuclear engineers to design a 
practical and secure nuclear system. In the deterministic method, the neutron transport 
problem is solved using unique mathematical techniques, such as the Greens’ function 
method (Öztürk, Anli, & Güngör, 2006) and the collision probability method (Raghav, 
1977) (Lefvert, 1979). In contrast, the Monte Carlo method inherently ‘solves’ the 
neutron transport equation via the actual simulation of neutron random walk 
movements.  

1.2 Monte Carlo Codes for Nuclear Reactor Analysis 

A nuclear Monte Carlo code is a computer code that simulates nuclear processes, 
typically the way neutrons behave and move inside a nuclear reactor (Duderstadt & 
Hamilton, 1976). Recall that the example of such a simulation has been briefly 
described in the previous section. The execution of a reactor code produces 
information such as the stability of a nuclear reactor. It helps nuclear engineers to 
properly design and control the nuclear system. Most importantly, simulating the way 
neutrons behave in a reactor allows a nuclear Monte Carlo physicist to estimate the 
number of neutrons within the reactor. The number of neutrons in a particular reactor 
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is proportional to the amount of fission power produced by the reactor. Essentially, 
the stability of a nuclear system is quantified using the multiplication factor, 𝑘. It 
assesses the rate of growth or decay of the total number of neutrons within the system. 
Briefly, the multiplication factor is defined as (Carter & Cashwell, 1975), 

 𝑘 =

the rate of neutron production via 
fission within the system

 the rate of neutron loss within the system
 (1.1) 

To illustrate, an unstable nuclear system will have a typical value of 𝑘 > 1, 
which can inadvertently lead to an exponential and uncontrollable growth of neutron 
population within the system. This will then increase the possibility of inducing an 
uncontrollable amount of fission reactions. Consequently, a tremendous amount of 
fission energy is tapped and thus causing a nuclear disaster such as Fukushima Dai-
ichi incident (Hirose, 2012) and Chernobyl incident (Beresford et al., 2016). 

In nuclear reactor analysis, there are two distinct types of nuclear code and they 
are the nuclear design code and the reactor core management code. The solving 
technique implemented in both codes can be categorized as the deterministic method 
or the Monte Carlo method. The purpose of a nuclear design code is to enable nuclear 
engineers to first design nuclear devices or even a nuclear reactor. Typically, a design 
code allows the user to define arbitrary geometries that compose of various different 
types of materials. For example, a design code can be used to design a radiation 
shielding wall (Cho et al., 2004) or even to study the production of weapons-grade 
plutonium (Glaser & Ramana, 2007) for military purpose. In contrast, a core 
management code is a code specifically designed for a particular nuclear reactor core. 
It allows nuclear engineers to make decisions on managing reactor core compositions 
such as fuel reshuffling, nuclear fuel replacements and allocation of various 
irradiation facilities inside the reactor core.  

Several examples of the deterministic code are TRIGLAV (Peršič et al., 2017) 
for generic TRIGA reactors, and APOLLO (Mathonniere & Stankovski, 1992) used 
by EDF Energy and Areva. Whereas some examples of the Monte Carlo nuclear 
system design code are MCNP by Los Alamos National Laboratory (LANL) (X-5 
Monte Carlo Team, 2005) and OpenMC by Massachusetts Institute of Technology 
(MIT) (Romano & Forget, 2013).  

Criticality calculation, or sometimes called the eigenvalue calculation, is a well-
known neutron transport simulation technique to determine the multiplication factor 
of a certain nuclear system (Duderstadt & Hamilton, 1976). Here, neutron productions 
via fission reaction are included in the simulation. Most nuclear design codes and core 
management codes have the capability of running criticality calculations. In a 
deterministic criticality code, a modified neutron transport equation called the 𝑘-
eigenvalue equation is solved and computed by various mathematical methods 
available (Duderstadt & Hamilton, 1976). Also, a deterministic code is 
computationally less expensive since there are no random processes involved. 
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CHAPTER 2 

NEUTRON TRANSPORT THEORY 
 

 

 

 

 

In a reactor core, neutrons move in complicated trajectories due to constant collisions 
with nuclei. Typically, these recurring collisions cause the neutron trajectories to 
appear to be zigzag. For instance, source neutrons were originated from their 
corresponding birth locations, 𝐫, moving with particular energy, 𝐸, and direction 𝛀. 
Afterwards, they appear at other positions, 𝐫′, at a later time. These neutrons could 

also change its energy and direction into 𝐸′ and 𝛀′, respectively after a collision at 𝐫′. 
In that sense, these neutrons are said to have been transported from the current state 
(𝐫, 𝐸, 𝛀) to the next subsequent state (𝐫 , 𝐸 , 𝛀 ). Correspondingly, the study of such 
a process is coined as the neutron transport theory. In this chapter, an exact equation 
which describes the neutron transport phenomena will be introduced. Such an 
equation is recognized as the neutron transport equation and the key objective of this 
study is to solve the equation. The readers will also be introduced with the basic 
concepts of the neutron transport theory before jumping into the battle of solving the 
equation. 
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2.1 Neutron Density and Flux 

The central objective of this section is to familiarize the ways of counting the number 
of neutrons within a nuclear system. In this study, it is essential to understand the 
approach of characterizing neutrons within a medium.  To begin with, we define the 
neutron density, 𝑁(𝐫, 𝑡) 𝑑3𝑟, at a point 𝐫 ∈ ℝ3 within a reactor core and at time 𝑡, as 
the expected number of neutrons in the unit volume 𝑑3𝑟. It is convenient to 

characterize neutrons according to their energy, 𝐸, and direction, 𝛀, such that, 

 

𝛀 =
𝐯

|𝐯|
= 𝑢𝐞𝑥 + 𝑣𝐞𝑦 + 𝑤𝐞𝑧 

= sin 𝜃 cos 𝜃

𝑢

𝐞𝑥 + sin 𝜃 sin 𝜑

𝑣

𝐞𝑦 + cos 𝜃
𝑤

𝐞𝑧 (2.1)

where 𝐯 is the neutron velocity, 𝐞𝑥, 𝐞𝑦, 𝐞𝑧  are the basis vectors of the Cartesian 
coordinate, 𝜃 ∈ [0, 𝜋) and 𝜑 ∈ [0,2𝜋). Correspondingly, the zenith angle, 𝜃, and the 
azimuthal angle, 𝜑, are indicated in Fig. 2.1. Also, 

 √𝑢2 + 𝑣2 + 𝑤2 = 1 (2.2)

 

By referring to Fig. 2.1(a), consider a unit volume 𝑑3𝑟 containing a ‘mixture’ of 
neutrons with assorted energies and directions. One could possibly select the neutrons 
with a specific energy 𝐸 and direction 𝛀 from 𝑑3𝑟. Thus, the expected number of 

 

(a) (b) 

Figure 2.1: (a) The neutron density, 𝑁(𝐫, 𝑡); and (b) the direction variables characterizing a neutron. 
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neutrons in 𝑑3𝐫 at position 𝐫, with energy 𝐸 about 𝑑𝐸, moving towards the direction 

𝛀 in solid angle 𝑑𝛀 at time 𝑡 is given by, 

 𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 𝑑𝐸 𝑑𝛀  (2.3)

Note that the angular neutron density, 𝑛(𝐫, 𝐸, 𝛀, 𝑡), is introduced in Eq. (2.3). 

Subsequently, 𝑛(𝐫, 𝐸, 𝛀, 𝑡) is defined similarly as 𝑁(𝐫, 𝑡), however, the former 
considers the neutron energy and direction. In the neutron transport theory, it is 
convenient to express Eq. (2.3) in terms of the angular neutron flux, ψ(𝐫, 𝐸, 𝛀, 𝑡), 
where, 

 ψ(𝐫, 𝐸, 𝛀, 𝑡) = 𝑣 𝑛(𝐫, 𝐸, 𝛀, 𝑡) (2.4) 

where 𝑣 is the neutron speed (𝑣 = √2𝐸/𝑚n, 𝑚n is the neutron rest mass). The angular 
neutron flux has a unit of cm–2 s–1. Subsequently, the angular neutron current density 
is defined as, 

 𝐣(𝐫, 𝐸, 𝛀, 𝑡) = 𝛀 ψ(𝐫, 𝐸, 𝛀, 𝑡) (2.5)

Remark that 𝐣 is a vector quantity such that, 

 𝐣(𝐫, 𝐸, 𝛀, 𝑡) ⋅ 𝑑𝐀 𝑑𝐸 𝑑𝛀   (2.6)

 is defined as the net rate at which neutrons with energy 𝐸 about 𝑑𝐸 and direction 𝛀 

in 𝑑𝛀 crossing a unit area 𝑑𝐴 at time 𝑡. In certain circumstances, it is favourable to 
express Eqs. (2.4) and (2.5) without considering the neutron direction, thus, 

 𝜙(𝐫, 𝐸, 𝑡) = ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝛀
4𝜋

 (2.7)

and, 

 𝐉(𝐫, 𝐸, 𝑡) =  𝐣(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝛀
4𝜋

 (2.8)

where the integration is taken over the entire solid angle, 𝑑𝛀, i.e. [0, 4𝜋). At this time, 
the quantity 𝐉 is now defined as the neutron current density, where, 
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 𝐉(𝐫, 𝐸, 𝑡) ⋅ 𝑑𝐀 (2.9)

is the net rate at which neutrons with energy 𝐸 pass through a surface area 𝑑𝐀. Note 
that the units of both 𝐉 and 𝜙 are equivalent i.e. cm–2 sec–1. However, 𝐉 is a vector 
quantity characterizing the net rate at which neutron flow through a surface, 𝑑𝐀, 
oriented in a given direction, 𝑑𝐀/|𝑑𝐀|. Whereas 𝜙 characterizes the total rate at which 
neutrons pass through an area, regardless of its orientation. Thus, 𝐉 is a more 
convenient quantity to describe neutron leakage from a system such as a nuclear 
reactor core. 

2.2 Neutron Cross Sections 

In the neutron transport theory, the concept of neutron cross section is one of the 
central aspects that determine neutron behaviour within a system. It conveys the 
likelihood of an interaction between an incident neutron and a target nucleus to occur 
(Lamarsh & Baratta, 1955). Intentionally, consider a stream of incident neutrons 
travels through the material within a nuclear reactor. Intuitively, there is a probability 
that a fraction of these neutrons interacts with the nuclei of the material. The physical 
quantity that expresses the likelihood of a neutron-nuclear interaction is known as the 
microscopic neutron cross section, 𝜎(𝐫, 𝐸). Here, 𝜎(𝐫, 𝐸) is a function of the neutron 
position, 𝐫, and the incident neutron energy, 𝐸. The former indicates that the 𝜎 is 
dependent on the material properties. Respectively, its value varies across the distinct 
parts of the reactor core region. Whereas, the latter indicates that the value of 𝜎 also 
varies according to the incident neutron energy. Moreover, the larger the value of 𝜎, 
the greater the possibility of a neutron-nucleus interaction characterized by 𝜎 to occur. 
Also, 𝜎 has a unit of cm–2 or “barn” (×10–24 cm–2). 

There is also another form of neutron cross section that considers the likelihood 
of interaction between an incident neutron and a target nucleus in a chunk of material 
instead of an individual atom. It is known as the macroscopic neutron cross section, 
Σ(𝐫, 𝐸). Formally, Σ(𝐫, 𝐸) is defined as the probability of a neutron interaction to 
happen per unit path length travelled by the neutron. Also, Σ(𝐫, 𝐸) has a unit of cm–1 
and the relationship between Σ(𝐫, 𝐸) and σ(𝐫, 𝐸) is given by, 

 Σ(𝐫, 𝐸) = 𝑁𝐷𝜎(𝐫, 𝐸) (2.10)

where 𝑁𝐷 is the number of atoms of the material per unit volume or simply called as 
the number density. Equally important, there are various types of neutron-nuclear 
interactions. These interactions include neutron capture, scattering, fission, and etc. It 
is now convenient to introduce the microscopic total neutron cross section, 𝜎t(𝐫, 𝐸), 

 𝜎t(𝐫, 𝐸) = 𝜎𝑗(𝐫, 𝐸)

𝑚

𝑗=1

 (2.11)



CHAPTER 2 
NEUTRON TRANSPORT THEORY 

14 
 

and similarly, the macroscopic total neutron cross section, Σt(𝐫, 𝐸), 

 

Σt(𝐫, 𝐸) = Σ𝑗(𝐫, 𝐸)

𝑚

𝑗=1

 

= 𝑁𝐷 𝜎𝑗(𝐫, 𝐸)

𝑚

𝑗=1

 

(2.12)

where 𝑚 is the total number of different types of neutron-nucleus interaction with the 
summation index, 𝑗, representing the different types of interaction. 

2.3 Double-differential Scattering Cross Sections 

Essentially, 𝜎(𝐫, 𝐸) does not conveys the probability of a neutron to possess the 

outgoing energy, 𝐸 , and the outgoing direction, 𝛀 , after an interaction event. For 
instance, scattering reaction is a type of interaction that changes the incident neutron 
energy and direction, i.e. (𝐸, 𝛀), into a new set of energy and direction, i.e. (𝐸 , 𝛀 ). 
Thus, the likelihood of a scattering reaction that causes the change in neutron energy 
and direction (𝐸, 𝛀) into (𝐸 , 𝛀 ) is expressed in term of 𝜎s

(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ). At 

this point, 𝜎s
(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) is known as the microscopic double-differential 

scattering cross section. Now, the dependency of 𝜎s on the incident neutron direction, 

𝛀, is usually neglected because the nuclei in any material are usually randomly 
oriented. Consequently, when all possible nuclear orientations are considered, the 
dependency of 𝜎s on 𝛀 averages out. 

Crucially, the relationship between 𝜎s(𝐫, 𝐸) and 𝜎s
(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) is 

given by, 

 𝜎s(𝐫, 𝐸) = 𝜎s
(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) 𝑑𝐸

∞

0

𝑑𝛀
4𝜋

 (2.13)

Likewise, the property in Eq. (2.10) can also be applied to obtain the macroscopic 
double-differential scattering cross section, 

 Σs(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) = 𝑁𝐷𝜎s(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ). (2.14)

In addition, both microscopic and macroscopic double-differential cross sections do 
not depend on the incident neutron direction. However, they depend on the scattering 
angle, 𝛼, which is the angle between 𝛀 and 𝛀 . It is convenient to express the change 
in the neutron direction in terms of the scattering cosine, 𝜇0, 
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 𝜇0 = 𝛀 ⋅ 𝛀 = cos 𝛼 (2.15)

Finally, one may also express the macroscopic double-differential scattering cross 
section in terms of 𝜇0, 

 Σs(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 ) ≡ Σs(𝐫, 𝐸 → 𝐸 , 𝛀 ⋅ 𝛀 ) 
≡ Σs(𝐫, 𝐸 → 𝐸 , 𝜇0) 

(2.16)

2.4 Neutron Interaction Rate 

Ideally, we begin introducing the reaction rate density, 𝑅, which is defined as the 
expected number of neutron-nucleus interactions that occur per unit volume and per 
unit time. Subsequently, the expected number of interactions per second, 𝑓 , 
experienced by a neutron moving with an average speed of 𝑣 within the material is 
given by, 

 𝑓 = 𝑣Σ(𝐫, 𝐸) (2.17)

Thus, the total reaction rate density of a type of interaction in a volume 𝑑3𝑟 caused by 

an incident neutron with energy and direction (𝐸, 𝛀) at position 𝐫 and time 𝑡 is given 
by, 

 
𝑅(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 = 𝑓 ×  𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

= 𝑣 Σ(𝐫, 𝐸) 𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

= Σ(𝐫, 𝐸) ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

(2.18)

The similar concept also relevant to the scattering reaction, where the expected 
number of scattering reactions that changes the energy and direction of a neutron from 

(𝐸, 𝛀) into (𝐸 , 𝛀 ) is given by, 

 𝑅(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 = Σs(𝐫, 𝐸 → 𝐸 , 𝛀 → 𝛀 )ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 (2.19)

2.5 Neutron Transport Equation 

Principally, the neutron transport theory uncovers the distribution of neutrons in a 
system. The theory considers the movement of neutrons and the way they interact with 
the materials contained in the system. The distribution of neutrons in a system, 
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typically in a reactor core, can be obtained by solving the neutron transport equation. 
One can derive the neutron transport equation by balancing various mechanisms that 
cause gain or loss of neutrons within a system.  

At this instance, it is appropriate to begin deriving the neutron transport equation 
by considering the rate of change of the neutron density, 𝑛(𝐫, 𝐸, 𝛀, 𝑡) within an 
infinitesimal volume, 𝑑3𝑟, 

 

 
𝜕

𝜕𝑡
𝑛(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟  =

1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 

= 𝑅+ − 𝑅− 
(2.20)

where 𝑅+ is the total rate of interactions that cause the gain of neutrons in 𝑑3𝑟, and 
𝑅− is the total rate of interactions that cause the loss of neutrons in 𝑑3𝑟. 

2.5.1 Neutron Loss via Net Leakage 

At first, consider a few neutron currents, 𝛀ψ, entering and leaving an infinitesimal 
volume 𝑑3𝑟 of a material through the surface 𝑆 which defines the boundary of 𝑑3𝑟. In 
essence, the difference between the rate of neutrons entering and leaving 𝑑3𝑟 through 
𝑆 is equal to the resulting neutron leakage rate, 

 

 

Net
Leakage = 𝐣(𝐫, 𝐸, 𝛀, 𝑡) ⋅ 𝑑𝐒

𝑆

 

= 𝛀 ψ(𝐫, 𝐸, 𝛀, 𝑡) ⋅ 𝑑𝐒
𝑆

 
(2.21)

Here, Gauss’ theorem of vector calculus can be applied, and Eq. (2.21) will reduce 
into,  

 

Net
Leakage = 𝛁 ⋅ 𝛀ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟  

= 𝛀 ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟  
(2.22)
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2.5.2 Neutron Loss via Disappearance Interactions 

Suppose an incident neutron collides with a nucleus in an infinitesimal volume 𝑑3𝑟. 
Naturally, there is a possibility that an interaction that causes the disappearance of the 
neutron to occur. If such a disappearance interaction is possible, the neutron is 
considered loss from 𝑑3𝑟. For example, during a neutron capture interaction e.g. (n, 𝛾) 
reaction and (n, 𝛼) reaction, an incident neutron is absorbed by the nucleus. 
Consequently, a secondary particle, e.g. 𝛾-ray or 𝛼-particle, is released as the product 
of the reaction. Relevantly, scattering reaction is equally considered as a 
disappearance interaction. In scattering reaction, an incident neutron with the energy 
and direction (𝐸, 𝛀) is considered lost whilst a new secondary neutron with the energy 

and direction (𝐸 , 𝛀 ) is ejected from the nucleus. When a stream of neutrons with 

energy 𝐸 and direction 𝛀 travel through 𝑑3𝑟, the rate of neutron loss in 𝑑3𝑟 due to 
disappearance reactions is given by, 

 Total
loss rate

= Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟 . (2.23)

Conveniently, all reactions at the collision site are considered as disappearance 
reactions, thus the total macroscopic neutron cross section is incorporated in Eq. 
(2.23). 

2.5.3 Neutron Gain via In-Scattering 

Recall that in the neutron transport theory, neutrons are characterised according to 
their energy and direction, i.e. (𝐸, 𝛀). In this section, our objective is to analyse the 

expected number of neutrons with energy and direction (𝐸, 𝛀) that appear in an 
infinitesimal volume, 𝑑3𝑟, due to in-scattering. The term “in-scattering” is coined to 
indicate the interaction where an incident neutron with any energy and direction, 

(𝐸 , 𝛀 ), are scattered into the energy and direction of interest, (𝐸, 𝛀). For 
generalization purpose, the neutron in-scattering accounts all types of scattering 
interaction, e.g. elastic scattering, inelastic scattering, potential scattering, etc.  

Most importantly, the gain rate of neutrons with energy and direction (𝐸, 𝛀) in 

𝑑3𝑟 due to in-scattering of an incident neutron with energy and direction (𝐸 , 𝛀 ) is 
given by, 

 
Total in-
scattering

rate
= Σs

(𝐫, 𝐸 → 𝐸, 𝛀 → 𝛀) ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑3𝑟  (2.24)
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Equally important, to obtain the total neutron gain rate via in-scattering, the sum of 
the contributions of all incident neutron energies,  𝐸 , and directions, 𝛀 , are 
considered, 

 

Total in-
scattering

rate
= Σs

(𝐫, 𝐸 → 𝐸, 𝛀
∞

04𝜋

→ 𝛀) ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸 𝑑𝛀′ 𝑑3𝑟 . 

(2.25)

2.5.4 Neutron Gain via Fission 

Undeniably, fission reaction is the most important neutron-nucleus interaction that 
drives the power generation in a nuclear reactor core. A typical nuclear fission reaction 
such as 

n + 𝑈92
235 → 𝑈 ∗

92
236 → fission products 

ejects out a mixture of reaction products, including the daughter nuclei and several 
fission neutrons plus numerous gammas, betas, and neutrinos. The fission fragment 
nuclei generated by the fission reaction are both highly charged and remarkably high 
in energy. They slow down through collisions with neighbouring nuclei and 
dissipating energy during the process. This is, in reality, the primary mechanism by 
which the fission energy finally appears as heat formed in the fuel material. 

Equally important, several neutrons are also produced during the fission 
reaction. These neutrons can be utilised to breed a fission chain reaction. Majority of 
these fission neutrons are produced promptly (within 10-14 sec) of the fission event 
and these neutrons are attributed to as prompt (Duderstadt & Hamilton, 1976). 
Nevertheless, less than 1% of the neutrons produced appear with an apparent time 
delay from the subsequent decay of radioactive fission products. These delayed 
neutrons are essential for the practical control of the fission chain reaction. Essentially, 
the total number of neutrons released in a fission reaction will fluctuate from one 
reaction to another. However, the average number of neutrons released per fission, 𝜈, 
is of greater concern. This quantity depends on both the nuclear isotope involved and 
the incident neutron energy. In general, 𝜈 tends to increase with increasing incident 
neutron energy (Duderstadt & Hamilton, 1976; Lamarsh & Baratta, 1955). 

In particular, fission neutrons are ejected with a distribution of energies, with 
the average energy being about 2 MeV. Such a distribution will primarily depend on 
the fissionable isotope involved. The energy distribution may also depend on the 
incident neutron energy and will vary for prompt and delayed neutrons. It is 
convenient to introduce the fission spectrum, 𝜒(𝐸), which is defined as the probability 
of having a fission neutron ejected with energy 𝐸 as a result of a fission reaction.  

Presume that 𝜈(𝐸 ) is the average number of neutrons produced per fission 
induced by an incident neutron with energy 𝐸 . Then, the total fission rate at which 
fission neutrons are generated in an infinitesimal volume 𝑑3𝑟 is given by, 
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 𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸
∞

0

𝑑𝛀′
4𝜋

𝑑3𝑟. (2.26)

Since we are only interested in knowing rate of fission reaction causing the birth of 
the fission neutrons with energy 𝐸 and direction 𝛀, thus, Eq. (2.26) can be modified 
into, 

 𝜒(𝐸)𝑃 (𝛀) 𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸
∞

0

𝑑𝛀′
4𝜋

𝑑3𝑟 (2.27)

where 𝑃 (𝛀) is the probability of having a fission neutron ejected towards the direction 

𝛀. If the fission neutrons are anticipated to get emitted isotropically, then 𝑃 (𝛀) is 
simply the inverse of all possible solid angles subtended by a fission neutron, i.e. 4𝜋. 
Finally, the fission term of the transport equation is defined as the rate of fission 
neutron appearing in (𝐸, 𝛀): 

  

Fission
rate

=
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸

∞

0

𝑑𝛀′ 
4𝜋

𝑑3𝑟. 
(2.28)

2.5.5 The Differential Form of Neutron Transport Equation 

At this point, all of the general interaction rate equations that describe the neutron gain 
and loss mechanisms in 𝑑3𝑟 have been expressed. The neutron transport equation can 
be derived by rewriting Eq. (2.20) in terms of the net rate of neutrons appearing in 

(𝐸, 𝛀) and net rate of neutrons loss from (𝐸, 𝛀), 

 

1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑3𝑟

= −
Net

Leakage
rate

−
Total
loss 
rate

+
Total in-
scattering

rate

+ Fission
rate

 

(2.29)

To proceed further, Eqs. (2.22), (2.23), (2.25) and (2.28) are substituted into Eq. 
(2.29). Finally, the volume integrals over the whole 𝑑3𝑟 are cancelled off, and the final 
form of the neutron transport equation is given by, 
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1

𝑣

𝜕ψ

𝜕𝑡
+ 𝛀 ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀, 𝑡) + Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀, 𝑡) 

= Σs(𝐫, 𝐸 → 𝐸, 𝛀 → 𝛀)ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸
∞

0

𝑑𝛀′ 
4𝜋

 

+
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸

∞

0

𝑑𝛀′ 
4𝜋

 

(2.30)

Alas, solving Eq. (2.30) is rather difficult. It is necessary to simplify the form of Eq. 
(2.30) before any attempts are made to solve it. One of the well-known simplification 
methods is via the neutron diffusion approximation. Such an approximation is an 
essential part in reactor theory since it is adequately uncomplicated to enable detailed 
calculations. The model is sufficiently realistic to provide many more significant 
concepts arising in the nuclear reactor analysis. The next chapter will focus on the 
establishment of an approximate representation of the neutron transport equation, 
which is much easier to work with. 
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CHAPTER 3 

MULTIGROUP METHOD AND CRITICALITY 
CALCULATION 

 

 

 

 

 

 

Presume that one wishes to sustain a stable fission chain reaction and thereby reach a 
steady rate of fission energy production. Therefore, one must design a nuclear reactor 
in such a way that the rates of neutron absorption and leakage are compensated by the 
rate of fission neutron production. In this chapter, the multigroup method will be 
introduced to simplify and reduce the general transport equation into the multigroup 
equations. Then, readers will be presented with the most vital calculation in reactor 
physics, that is, the criticality calculation. At this point, the criticality calculation of a 
nuclear system will allow us to evaluate the stability of the fission chain reaction. At 
the end of this chapter, the alternative form of the time-independent multigroup 
diffusion equations will be established. Also, these equations form a matrix expression 
which is known as the k-eigenvalue equation and it will be used to accomplish a 
criticality calculation. Briefly, a criticality calculation at first gathers all parameters 
related to the reactor design, nuclear fuel properties and the reactor core configuration. 
At the end of the calculation, nuclear engineers will be able to quantitatively estimate 
the stability of the reactor using the multiplication factor, 𝑘. 

3.1 Interaction Probability 

Consider a monodirectional and monoenergetic neutron beam with energy 𝐸 is 

targeted along the direction 𝛀 towards a material of thickness 𝑅, with an initial beam 
flux magnitude 𝜙0. Also, the region outside the material is considered vacuum, and a 
neutron detector is placed at some distance behind the material. Hence, every neutron 



CHAPTER 3 
MULTIGROUP METHOD AND CRITICALITY CALCULATION 

22 
 

that interacts in the material is lost from the beam and leaving only neutrons that do 
not interact to reach the detector.  

 

 

Figure 3.1: Measurement of neutrons that have not interacted with the target. 

 

At this instance, it is convenient to define 𝜙(𝑟) as the flux of the neutron beam 
after penetrating the distance 𝑟 into the material. After travelling at an additional 
distance 𝑑𝑟, the decrease of the flux is given by, 

 −𝑑𝜙(𝑟) = Σt(𝑟) 𝜙(𝑟) 𝑑𝑟 (3.1)

Assuming that the target material is homogeneous, and henceforth, the total neutron 
cross section is constant at all locations within the material, 

 −𝑑𝜙(𝑟) = Σt  𝜙(𝑟) 𝑑𝑟 (3.2)

The probability of neutrons that will subsequently interact in the next additional 
distance 𝑑𝑟 after penetrating the material at the distance 𝑟 is given by 𝑃1, 

 𝑃1(𝑟) =
𝑑𝜙(𝑟)

𝜙(𝑟)
 (3.3)

Hence, rearranging Eq. (3.2) and substituting into Eq. (3.3) yields, 

 𝑃1(𝑟) = −Σt  𝑑𝑟 (3.4)

Solving the separable differential equation in Eq. (3.2) yields, 

 𝜙(𝑟) = 𝜙0𝑒−Σt𝑟  (3.5) 

The probability of the neutrons to penetrate the material until the distance 𝑟 without 
any interactions is given by 𝑃2, 

INCIDENT NEUTRONS 

SCATTERED NEUTRONS

NON-INTERACTED 
NEUTRONS 

NEUTRON 
DETECTOR 

𝜙0

𝑟 = 0 𝑟 = 𝑅

𝛀
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 𝑃2(𝑟) =
𝜙(𝑟)

𝜙0

= 𝑒−Σt𝑟  (3.6)

Next, the probability of a neutron to have its first interaction in the distance 𝑑𝑟, 𝑃 (𝑟), 
is given by, 

 𝑃 (𝑟) = 𝑃1(𝑟) × 𝑃2(𝑟) = Σ𝑡𝑒
−Σt𝑟 𝑑𝑟 (3.7)

Finally, the probability density function of the distance to the next interaction, 𝑝(𝑟), is 
given by, 

 𝑝(𝑟) = Σt𝑒
−Σt𝑟 (3.8)

3.2 Fick’s Law 

As pointed out in the previous section, solving the neutron transport equation is rather 
cumbersome. However, it is possible to impose certain conditions so that the neutron 
flux, 𝜙, and current, 𝐉, are related in a simple way. Thus, the relation can be used to 
simplify the complicated form of the transport equation which will ease the process 
of solving the equation. Now, it is practical to derive the relationship between 𝜙 and 
𝐉 by calculating the neutron current density at any location within a medium. 

 

Figure 3.2: An illustration for deriving Fick’s law. 

The location at which the neutron current density is calculated is defined to be 
the origin of a coordinate system shown in Fig. 3.2. Most importantly, the three vector 
components of 𝐉 must be evaluated. It is convenient to begin with 𝐽𝑧 and consider the 

𝐞𝑦 

𝑑𝛀 

𝐞𝑥 

𝐞𝑧

𝜑 

𝜃 

𝑑𝐴𝑧 

𝑑𝑉  

SCATTERED NEUTRONS
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rate at which neutrons flow through the area 𝑑𝐴𝑧 spanning over the 𝑥𝑦-plane at the 
origin. Note also that there are no neutron sources exist in the medium. 
Correspondingly, all neutrons that pass through 𝑑𝐴𝑧 have just arrived from a 
scattering collision. Equally important, all scattering collisions that occur above the 
𝑥𝑦-plane will always cause some of the outgoing neutrons to flow downward through 
𝑑𝐴𝑧 and vice versa.   

At this point, it is useful to begin calculating the number of scattering collisions 
that occur per second in the volume element 𝑑𝑉  at point 𝐫. By using the theorems 
explained in Section 2.4, one can deduce that this number is equal to 

 Σs𝜙(𝐫) 𝑑𝑉  (3.9)

Based on the assumption that the scattering process is isotropic in the laboratory frame 
of reference, the fraction of outgoing neutrons that are scattered in the direction of 
𝑑𝐴𝑧 is given by 

 
𝑑𝐴𝑧 cos 𝜃

4𝜋𝑟2
 × Σs𝜙(𝐫) 𝑑𝑉 (3.10)

Inescapably, a fraction of these scattered neutrons will not succeed in reaching 𝑑𝐴𝑧 
where they are absorbed en route. As discussed in the previous section, the fraction of 
neutrons which able to reach 𝑑𝐴𝑧 per second is given by, 

 
𝑑𝐴𝑧 cos 𝜃

4𝜋𝑟2
 × Σs𝜙(𝐫) 𝑑𝑉 × 𝑒−Σt𝑟 (3.11)

At this instance, the 𝑧-component of neutron current density, 𝐽𝑧 is just the integral of 
the fraction given by Eq. (3.11) divided by 𝑑𝑆𝑧 over the entire volume. With 𝑑𝑉  
written in spherical coordinates, where, 𝑑𝑉 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜑, thus, 

 𝐽𝑧 =
Σs

4𝜋
 𝜙(𝐫) 𝑒−Σt𝑟 cos 𝜃 sin 𝜃  𝑑𝜑 𝑑𝜃 𝑑𝑟

2𝜋

𝜑=0

𝜋

𝜃=0

∞

𝑟=0

 (3.12)

At this point of calculation, much of the attention was given to the 𝑧-component 
of 𝐉, where it is expressed in terms of the equivalent spherical coordinates. Most 
importantly, the orientation of the spherical coordinate system is symmetric, thus, the 
form of the right-hand side of Eq. (3.12) also applies to the 𝑥-component and 𝑦-
component of 𝐉. Suppose that the component of interest is denoted with 𝜇 ∈ {𝑥, 𝑦, 𝑧}. 
In general, the three components of 𝐉 in a Cartesian coordinate system can be written 
in the form of, 

 𝐽𝜇 =
Σs

4𝜋
  𝜙 𝐫𝜇  𝑒−Σt𝑟 cos 𝜃𝜇  sin 𝜃𝜇 𝑑𝜑𝜇𝑑𝜃𝜇𝑑𝑟

2𝜋

𝜑𝜇=0

𝜋

𝜃𝜇=0

∞

𝑟=0

 (3.13)

where 𝜃𝜇 and 𝜑𝜇 are the polar angle and the azimuthal angle respectively with the 
zenith of the spherical coordinate system lies along the 𝜇-axis of the Cartesian 
coordinate system.  



PART I 
 THEORETICAL BACKGROUND OF TRIMON 

25 
 

Alas, the integral in Eq. (3.13) cannot be evaluated because 𝜙(𝐫𝜇) is unknown. 
However, if 𝜙(𝐫𝜇) varies slowly with positions, it can be expressed in Taylor’s series. 
For the case where 𝑧-axis as the zenith of the spherical coordinate system (𝜇 ≡ 𝑧), the 
Taylor’s expansion of 𝜙(𝐫) is given by,  

 𝜙(𝐫) = 𝜙0 + 𝑥
𝜕𝜙

𝜕𝑥 0
+ 𝑦

𝜕𝜙

𝜕𝑦 0

+ 𝑧
𝜕𝜙

𝜕𝑧 0
…   (3.14) 

with 𝐫 = 𝑥𝐞𝑥 + 𝑦𝐞𝑦 + 𝑧𝐞𝑧, 𝑥 = 𝑟 sin 𝜃 cos 𝜑, 𝑦 = 𝑟 sin 𝜃 sin 𝜑 and 𝑧 = 𝑟 cos 𝜃. From 
Eq. (3.14), it is now clear that the similar form can be used for the other two 
components of 𝐉, i.e. 𝜇 ≡ 𝑥 and 𝜇 ≡ 𝑦. In general, it is useful to write  𝜙(𝐫𝜇) as, 

 𝜙 𝐫𝜇  

 = 

𝜙0 + 𝑟 cos 𝜑
𝜕𝜙

𝜕𝑥 0
+ 𝑟 sin 𝜃 cos 𝜑

𝜕𝜙

𝜕𝑦 0

+ 𝑟 sin 𝜃 sin 𝜑
𝜕𝜙

𝜕𝑧 0
, 𝜇 ≡ 𝑥

𝜙0 + 𝑟 cos 𝜑
𝜕𝜙

𝜕𝑦 0

+ 𝑟 sin 𝜃 cos 𝜑
𝜕𝜙

𝜕𝑧 0
+ 𝑟 sin 𝜃 sin 𝜑

𝜕𝜙

𝜕𝑥 0
, 𝜇 ≡ 𝑦

𝜙0 + 𝑟 cos 𝜑
𝜕𝜙

𝜕𝑧 0
+ 𝑟 sin 𝜃 cos 𝜑

𝜕𝜙

𝜕𝑥 0
+ 𝑟 sin 𝜃 sin 𝜑

𝜕𝜙

𝜕𝑦 0

, 𝜇 ≡ 𝑧

(3.15)

Next, Eq. (3.15) is substituted in Eq. (3.14), and of course, it is found that the terms 
containing cos 𝜑 and sin 𝜑 will integrate to zero. Thus, 𝐽𝜇 reduces into, 

 

𝐽𝜇 =
Σs

4𝜋
  𝜙0

2𝜋

𝜑𝜇=0

𝜋

𝜃𝜇=0

∞

𝑟=0

+ 𝑟 cos 𝜑𝜇
𝜕𝜙

𝜕𝜇 0

 𝑒−Σt𝑟 cos 𝜃𝜇 sin 𝜃𝜇 𝑑𝜑𝜇𝑑𝜃𝜇𝑑𝑟 

(3.16)

Hence, evaluating the definite integrals in Eq. (3.16) yields, 

 𝐽𝜇 = −
Σs

3Σt
2

𝜕𝜙

𝜕𝜇 0

. (3.17)

Finally, the vector 𝐉 is now, 

 

𝐉 = 𝐽 𝑥𝐞𝑥 + 𝐽𝑦𝐞𝑦 + 𝐽𝑧𝐞𝑧 

= −
Σs

3Σt
2

𝛁𝜙. (3.18)

In summary, Eq. (3.18) is known as Fick’s law, which states that the current density 
vector is proportional to the negative gradient of the flux. It is useful to define the 
proportionality constant 𝐷, which is known as the diffusion coefficient where, 
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 𝐷 =
Σs

3Σt
2
 (3.19) 

With this notation, Fick’s law can be written as, 

 𝐉 = −𝐷 𝛁𝜙. (3.20)

It should be noticed that the derivation of Fick’s law in this section is just a pre-
requisite of the construction of good knowledge and foundation for the research and 
development of a multigroup Monte Carlo method which will be discussed further in 
Chapter 4. Readers may find that in the Monte Carlo method, the transport behaviour 
of neutrons is determined stochastically without the use of Fick’s law, as in Eq. (3.20). 
Here, the diffusion of neutrons within a medium is reproduced via the computer 
simulation of neutron random walks. 

So far, much of the attention has been given to the derivation of Fick’s law. 
However, it is crucial to re-examine the conditions in which this law can be expected 
to be valid. There are a few assumptions made when deriving Fick’s law in reactor 
calculation. However, most of these assumptions can be relaxed because of some 
reasons that apply to nuclear reactor conditions. A detailed discussion of these 
assumptions is given by (Lamarsh & Baratta, 1955). However,  the diffusion 
approximation has to be strictly performed under a number of important assumptions: 

(a) The neutron diffusing medium must be infinite, to allow the integration of 
Eq. (3.13) over the entire space. Fortunately, the 𝑒−Σt𝑟 term in Eq. (3.13) 
dies off quickly with distance. Consequently, neutrons streaming from 
farther distances from the point where 𝐉 is calculated give fewer 
contributions to 𝐉, and their effect on the computation of 𝐉 is negligible. 
Thus, Fick’s law is still valid in the interior of a reactor, since the size of a 
reactor is exceptionally large compared to the diffusion distances of these 
neutrons. A problem may arise for the case near the outer surface of a reactor 
because there exists an abrupt change of the material cross section, i.e. 
between a dense medium (the interior of the reactor) and a vacuous medium 
(the outer region of the reactor). However, such an issue can be rectified by 
using a special treatment which is known as the reciprocal logarithmic 
derivative. A detailed reference of the special treatment is given by 
(Lamarsh & Baratta, 1955) and (Duderstadt & Hamilton, 1976). It should 
be noted that this issue is not applicable to Monte Carlo method since the 
neutron transport behaviour is simulated and purely based on statistical 
observations. 

(b) The neutron flux is a slowly varying function of position; the Taylor series 
of the neutron flux, 𝜙(𝐫), given by Eq. (3.15) is only expanded up to the first 
order. Hence, a rapid change of the neutron flux may compromise the 
accuracy of the calculation, since it can cause the higher spatial derivative 
terms of the Taylor expansion of 𝜙(𝐫) to be significant and cannot be 
neglected. 

(c) The neutron flux is a slowly varying function of time; In Eq. (3.13), the 
neutron flux is assumed to be independent of time.  Unfortunately, a neutron 
needs time to travel from the collision site to the location where 𝐉 is 
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calculated. As previously discussed, only neutrons streaming from closer 
distances from the point where 𝐉 is calculated significantly contributes to 𝐉. 
So, the time taken for neutrons to travel at these close distances is negligible 
since neutrons travel at high speed. In a nuclear reactor, even the slowest 
neutrons travel at 1000m/s, thus this assumption can be relaxed.  

3.3 Multigroup Method 

It is well understood that neutron energies typically encountered in a reactor span a 
range from 10–3 eV to 107 eV. Also, neutron cross sections depend sensitively on 
energy over most of this range (Duderstadt & Hamilton, 1976). In this section, the 
continuous neutron energy dependence will be suppressed by assuming that all 
neutrons can be characterized using a few discrete energy groups. Precisely, the 
continuous neutron energy range is divided into several energy group intervals. Plus, 
the energy boundaries of each group interval are defined prior to the neutronic 
calculation. Subsequently, each individual neutron energy group is assigned to a 
differential equation known as the group equation. Next, a sequence of one-group 
calculations for each successive energy group is performed.  

In the multigroup method, the entire continuous neutron energy within a specific 
thermal nuclear reactor is divided into 𝐺 energy groups. Suitably, the highest energy 
that can be attained by a neutron in a nuclear system is 𝐸0 = ∞. A neutron group is 
assigned with an index, 𝑔 ∈ {1,2,3, … , 𝑔 − 1, 𝑔, 𝑔 + 1, … , 𝐺 − 1, 𝐺} where it has a 
predefined neutron energy range covering from 𝐸𝑔 to 𝐸𝑔−1, where 𝐸𝑔−1 > 𝐸𝑔 . To 
derive the diffusion equation for the energy group 𝑔, several group constants for the 
energy group need to be defined.  

Right now, it is favourable to simplify the neutron transport equation given by 
Eq. (2.30) using Fick’s law and the multigroup method. It is beneficial to go through 
each term of the neutron transport equation and simplify each of these terms 
accordingly. Consider a system, typically an infinitesimal volume 𝑑𝑉  of a 
homogeneous fissile material. To begin with, the energy variable in the neutron 
transport equation is eliminated by integrating Eq. (2.30) over the 𝑔th energy group 

defined within the energy range 𝐸𝑔, 𝐸𝑔−1 . Plus, the neutron direction, 𝛀, in the 
neutron transport equation can be eliminated by integrating the transport equation over 
the entire neutron directions, i.e. [0,4𝜋). Thus, 
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1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

Time rate of change

+ 𝛀 ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

Streaming term

+ Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

Disappearance term

= Σs(𝐫, 𝐸 → 𝐸, 𝛀 → 𝛀)ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸
∞

0

𝑑𝛀′ 
4𝜋

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

In-scattering term

+
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸

∞

0

𝑑𝛀′
4𝜋

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

Fission term

 

(3.21)

In addition, all integrations with respect to the neutron direction, 𝛀, over the entire 

solid angle, 4𝜋, will relax our focus on dealing with 𝛀. Remark that the study of the 
behaviour of neutrons regardless of its direction is in focus instead. 

Subsequently, several formal definitions of multigroup constants will be 
introduced. At this instance, the group flux, 𝜙𝑔, is defined as the flux integrated over 

the entire energy range defined for the group, 𝑔, i.e. 𝐸𝑔, 𝐸𝑔−1  

 𝜙𝑔(𝐫, 𝑡) = ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀
4𝜋

. (3.22)

The time rate of change term in Eq. (3.21) can be further simplified into, 

 

Time rate 
of  change

of neutrons
=

1

𝑣

𝜕

𝜕𝑡
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

 

=
1

𝑣𝑔

𝜕𝜙𝑔(𝐫, 𝑡)

𝜕𝑡
 

(3.23)

where the inverse neutron speed characterizing group 𝑔 is given by 

 
1

𝑣𝑔

=
1

𝜙𝑔(𝐫, 𝑡)

1

𝑣
ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

 (3.24)

Next, the streaming term in Eq. (3.21) can be further simplified in terms of the angular 
neutron current density, 𝐣(𝑟, 𝐸, 𝛀, 𝑡), via Eqs. (2.5), (2.6) and (2.7), 
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 𝛀 ⋅ 𝛁ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

=  𝛁 ⋅ 𝛀ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

= 𝛁 ⋅ 𝐣(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 
4𝜋

= 𝛁 ⋅ 𝐉(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 

(3.25)

Since Fick’s law establishes the relationship between the flux and the current density, 
𝐉(𝐫, 𝐸, 𝑡) can be approximated by substituting Eq. (3.20) into Eq. (3.25), giving, 

 

𝛁 ⋅ 𝐉(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

= 𝛁 ⋅ −𝐷(𝐫, 𝐸)𝛁𝜙(𝐫, 𝐸, 𝑡)  𝑑𝐸
𝐸𝑔−1

𝐸𝑔

  

= −𝛁 ⋅ 𝐷(𝐫, 𝐸) 𝛁𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 

(3.26)

With some simple mathematical manoeuvres, the group diffusion 
coefficient, 𝐷𝑔(𝐫, 𝑡), is defined as 

 𝐷𝑔(𝐫, 𝑡) =

𝐷(𝐫, 𝐸)𝛁𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝛁𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 (3.27)

The group diffusion coefficient as defined in Eq. (3.27) permits us to write the 
multigroup net leakage term as, 

 
Net

leakage = −𝛁 ⋅ 𝐷𝑔(𝐫, 𝑡) 𝛁𝜙𝑔(𝐫, 𝑡) (3.28)

Subsequently, the total macroscopic group cross section Σt
𝑔
(𝐫, 𝑡) is defined as 

 

Σt
𝑔
(𝐫, 𝑡) =

1

𝜙𝑔(𝐫, 𝑡)
Σt(𝐫, 𝐸)ψ(𝐫, 𝐸, 𝛀, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 𝑑𝛀
4𝜋

 

=
1

𝜙𝑔(𝐫, 𝑡)
Σ𝑡(𝐫, 𝐸)𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 

(3.29) 

Therefore, the rate at which neutrons from energy group 𝑔 interacts with the 
homogeneous fissile material and disappear from the energy group 𝑔 (also known as 
the disappearance term) can be simply written as, 
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Group 

disappearance
term

= Σt
𝑔
(𝐫, 𝑡) 𝜙𝑔(𝐫, 𝑡) (3.30) 

Recall that some neutrons from other energy groups, 𝑔 , will experience 
scattering collision with the homogeneous fissile material. Such a scattering collision 
changes the neutron energy, which also implies the change of the energy group. 
Consequently, some of these scattered neutrons will fall into group 𝑔, and this 
phenomenon is often coined as in-scattering. Of course, scattering collision can also 
remove neutrons from energy group 𝑔, which is termed as out-scattering. However, it 
is important to stress that the rate of out-scattering reaction has been included in Eq. 
(3.30) since it is equivalent to the removal of neutrons from energy group 𝑔. To this 
point, the macroscopic transfer group cross section is defined as 

 

Σs
𝑔 →𝑔

(𝐫, 𝑡)  =
1

𝜙𝑔 (𝐫, 𝑡)
 Σs(𝐫, 𝐸 → 𝐸, 𝛀

𝐸𝑔 −1

𝐸𝑔4𝜋

𝐸𝑔−1

𝐸𝑔4𝜋

→ 𝛀)Ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝐸 𝑑𝛀′ 𝑑𝐸 𝑑𝛀  

=
1

𝜙𝑔 (𝐫, 𝑡)
Σs(𝐫, 𝐸 → 𝐸)𝜙(𝐫, 𝐸 , 𝑡) 𝑑𝐸

𝐸𝑔 −1

𝐸𝑔

 

(3.31) 

where 𝜙𝑔 (𝐫, 𝑡) is defined similarly according to Eq. (3.22). Be aware of the special 
notation, i.e. 𝑔 → 𝑔, where it indicates the transfer of neutrons from group 𝑔  into 
group 𝑔. The in-scattering rate from energy group 𝑔  into 𝑔 can be written as, 

 
Group 

in-scattering
term

= Σs
𝑔 →𝑔

(𝐫, 𝑡) 𝜙𝑔 (𝐫, 𝑡) (3.32) 

Of course, the contribution of the neutron in group 𝑔 is caused by the in-scattering of 
neutrons from all energy groups into the energy group 𝑔. Such a total contribution can 
be represented as the summation of the right-hand-side of Eq. (3.32) over the entire 
incident neutron energy groups, 𝑔 = {1,2,3, … , 𝐺}. Thus, the total in-scattering rate 
can be written as, 

 

Σs
1→𝑔

(𝐫) 𝜙1(𝐫, 𝑡) + Σs
2→𝑔

(𝐫) 𝜙2(𝐫, 𝑡) + ⋯ + Σs
𝐺→𝑔

(𝐫) 𝜙𝐺(𝐫, 𝑡)

= Σs
𝑔 →𝑔

(𝐫) 𝜙𝑔 (𝐫, 𝑡)

𝐺

𝑔 =1

 
(3.33)

So far, intense work on deriving the group flux, multigroup inverse neutron 
speed, multigroup streaming term, multigroup disappearance term and multigroup in-
scattering has been completed. In a fissile medium, one must include a mathematical 
term that accounts for the neutron production due to fission reaction in the neutron 
transport equation. Originally, such a mathematical term is the fission term which is 
given by Eq. (2.28). The multigroup form of the fission term can be derived by first 
considering the production rate of fission neutrons with energy 𝐸 and direction 𝛀 due 
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to fission reactions induced by an incident neutron with energy 𝐸  and direction 𝛀 . 
This is given by, 

 𝑆f
(𝐫, 𝐸, 𝛀, 𝑡) =

𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝛀′ 

4𝜋

  (3.34)

In the above equation, the integration with respect to 𝑑𝛀′ over the entire solid 

angle, 4𝜋, simply indicates that 𝑆f
(𝐫, 𝐸, 𝛀, 𝑡) considers all possible incident neutron 

directions. Bear in mind that it is assumed that the fission neutrons are emitted 
isotropically. Put differently, the probability of ejecting fission neutrons isotropically 
via fission caused by an incident neutron of any direction is equal. Suppose that 
isotropic fission is implied, the total birth rate of fission neutrons in energy group 𝑔 
cause by fission reactions induced by incident neutron regardless of their energy and 
direction is given by,  

 

𝑆f (𝐫, 𝐸, 𝑡) =
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 )ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝛀′ 

4𝜋

𝑑𝛀 
4𝜋

  

=
𝜒(𝐸)

4𝜋
𝜈(𝐸 )Σf (𝐫, 𝐸 ) 𝑑𝛀 

4𝜋

ψ(𝐫, 𝐸 , 𝛀 , 𝑡) 𝑑𝛀′ 
4𝜋

 

= 𝜒(𝐸)𝜈(𝐸 )Σf (𝐫, 𝐸 )𝜙(𝐫, 𝐸 , 𝑡) 

(3.35) 

where, 

 𝑑𝛀 
4𝜋

= 4𝜋 (3.36)

The multigroup form of 𝑆f (𝐫, 𝐸, 𝑡) can be derived by integrating it with respect 
to the incident neutron energy, 𝐸  and the outgoing fission neutron energy 𝐸 over the 
entire energy range characterizing group 𝑔  and 𝑔 respectively, 

 

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑆f (𝐫, 𝐸, 𝑡)

= 𝜒(𝐸)𝜈(𝐸 )Σf (𝐫, 𝐸 )𝜙(𝐫, 𝐸 , 𝑡) 𝑑𝐸
𝐸𝑔 −1

𝐸𝑔

𝑑𝐸
𝐸𝑔−1

𝐸𝑔

  

(3.37) 

To further simplify the group fission term given in Eq. (3.37), several group constants 
of the fission term are defined. The group fission spectrum is defined as, 

 𝜒𝑔 = 𝜒(𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 (3.38)

and the group neutron production cross section is defined as, 

 𝜈𝑔 Σ
f
𝑔

=
1

𝜙𝑔 (𝐫, 𝑡)
𝜈(𝐸 )Σf (𝐫, 𝐸 )𝜙(𝐫, 𝐸 , 𝑡) 𝑑𝐸

𝐸𝑔 −1

𝐸𝑔

  (3.39) 



CHAPTER 3 
MULTIGROUP METHOD AND CRITICALITY CALCULATION 

32 
 

Consequently, Eq. (3.37) can be simplified into, 

 𝑆f (𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

= 𝜒𝑔𝜈𝑔Σ
f
𝑔

(𝐫)𝜙𝑔 (𝐫, 𝑡) (3.40)

Correspondingly, the total production of fission neutrons in group 𝑔 can be obtained 
by considering the sum of the fission neutrons production induced by incident 
neutrons from all groups. Thus, using Eq. (3.40), the group fission term can be written 
as: 

 

 

Group 
fission
term

= 𝜒𝑔𝜈1Σf
1(𝐫)𝜙1(𝐫, 𝑡) + 𝜒𝑔𝜈2Σf

2(𝐫)𝜙2(𝐫, 𝑡) + ⋯

+ 𝜒𝑔𝜈𝐺Σf
𝐺(𝐫)𝜙𝐺(𝐫, 𝑡) 

= 𝜒𝑔 𝜈𝑔 Σ
f
𝑔

(𝐫)𝜙𝑔 (𝐫, 𝑡)

𝐺

𝑔 =1

 

(3.41)

Perhaps, the most direct way of deriving the multigroup neutron diffusion 
equation is to apply the concept of neutron balance to a given energy group. Base on 
this notion, the mechanisms in which neutrons enter and leave the energy group 𝑔 are 
balanced. Mathematically, the neutron balance equation can be written as, 

 

Time rate
of  change of
neutrons in

group 𝑔

= − 

Change
due to

leakage
(Leakage term)

−

Disappearance
of neutrons

from group 𝑔
(Disappearance term)

+

Neutrons
scattering into

group g
(In-scattering term)

+

Appearance of
fission neutrons

in group 𝑔
(Fission Term)

 

(3.42)

Now, Eqs. (3.23), (3.28), (3.30), (3.32) and (3.41) are substituted into Eq. (3.42), 
which will then yield the general form of the multigroup equations, 

 

1

𝑣𝑔

𝜕𝜙𝑔(𝐫, 𝑡)

𝜕𝑡
= −𝛁 ⋅ 𝐷𝑔(𝐫, 𝑡) 𝛁𝜙𝑔(𝐫, 𝑡) − Σt

𝑔
(𝐫, 𝑡) 𝜙𝑔(𝐫, 𝑡)

+ Σs
𝑔 →𝑔

(𝐫, 𝑡) 𝜙𝑔 (𝐫, 𝑡)

𝐺

𝑔 =1

+ 𝜒𝑔 𝜈𝑔 Σ
f
𝑔

(𝐫, 𝑡)𝜙𝑔 (𝐫, 𝑡)

𝐺

𝑔 =1

 

𝑔 = 1,2,3, … , 𝐺 

(3.43) 

Several remarks on these equations are essential and need be clearly stated 
before proceeding to the next step of reactor calculation. The general form of 
multigroup diffusion equations given in Eq. (3.43) are reasonably exact since the 
following group constants were introduced, 
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Nevertheless, these group constants are still undetermined and need to be calculated. 
From the definitions of the group constants given by Eqs. (3.24), (3.27), (3.29), (3.31), 
(3.38) and (3.39), it is apparent that the flux 𝜙(𝐫, 𝐸, 𝑡) must be known prior to the 
calculation of the group constants. However, 𝜙(𝐫, 𝐸, 𝑡) is just the function that needs 
to be solved in the first place by discretizing the neutron energy into groups. This 
seems that the development of the multigroup method has been quite circular. Note 
also that the group constants are also dependent on the space and time which makes 
the problem even more cumbersome. Indeed, the group constants will be rigorously 
constant only if 𝜙(𝐫, 𝐸, 𝑡) is of the separable form, 

For such a scenario, the group constants will reduce to group averages over the flux 
energy spectrum 𝐺(𝐸). Alas, this is not the case in a nuclear reactor where the flux is 
usually not separable in energy. To rectify the problem, one may attempt to guess and 
approximate the intragroup flux characterizing each neutron energy group, i.e. 
𝜙(𝐫, 𝐸, 𝑡) ≅ 𝜙(̃𝐫, 𝐸, 𝑡). Hence, the group constants can be calculated by replacing 
𝜙(𝐫, 𝐸, 𝑡) with 𝜙(̃𝐫, 𝐸, 𝑡) in their corresponding mathematical definition. For example, 
the group total neutron cross section can be calculated as averages over these 
approximate intragroup fluxes, 

 Σt
𝑔
(𝐫, 𝑡) =

1

𝜙𝑔(𝐫, 𝑡)
Σt(𝐫, 𝐸)𝜙(̃𝐫, 𝐸, 𝑡) 𝑑𝐸

𝐸𝑔−1

𝐸𝑔

 (3.45)

with 

 𝜙𝑔(𝐫, 𝑡) = 𝜙(̃𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

. (3.46)

In the next section, the strategy of approximating the flux 𝜙(𝐫, 𝐸, 𝑡) will be discussed 
in detail, and thus, the group constants can be directly calculated. 

3.4 Fine Group Constants 

Recall that in the previous section, intense work has been accomplished to simplify 
the neutron transport equation via multigroup diffusion method. Along the 
simplification process, several group constants were introduced. However, these 
group constants are still dependent on space, energy and time because their calculation 
requires the flux,  𝜙(𝐫, 𝐸, 𝑡), to be known beforehand. Unfortunately, the purpose of 
solving the transport equation is to compute the flux. Thus, the only way to rectify 
such issue is by first ignoring the space and time variation of the flux, i.e.,  
𝜙(𝐫, 𝐸, 𝑡)~𝜙(𝐸). Then, 𝜙(𝐸) is approximated with the intragroup fluxes – a weighing 
flux as a function of neutron energy characterizing each of the neutron energy group 

 
1

𝑣𝑔

, 𝐷𝑔, Σt
𝑔
, Σs

𝑔 →𝑔
, 𝜒𝑔, ν𝑔 , Σ

f
𝑔

 

 𝜙(𝐫, 𝐸, 𝑡) = 𝐹 (𝐫, 𝑡)𝐺(𝐸) (3.44)
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𝑔. Above all, one will be able to do very good multigroup calculations with only a few 
neutron energy groups provided that a good guess of the shape of 𝜙(𝐸) for a nuclear 
system is made.  

Since the nature of the neutron transport equation is separable in time, the flux 
𝜙(𝐫, 𝐸, 𝑡) can be written as 

As a result, group constants can be averaged over time. In general, the mathematical 
definitions of the group constants can be generally written as, 

where 𝐾  is the integral kernel which maps Eq. (3.48) into various type of group 

constants, i.e. 𝐾 ∈ 1

𝑣(𝐫,𝐸)
, Σ𝑡(𝐫, 𝐸), Σ𝑠(𝐫, 𝐸 → 𝐸), νΣ𝑓 (𝐫, 𝐸), . Suppose that the 

flux is separable in time, it is convenient to eliminate the time variable in our group 
constants calculation, since, 

Also, from the definition of the group diffusion coefficient, 

Since Laplacian operator, ∇2, does not operate on the time variable, the definition of 
the group diffusion coefficient can be written as 

 𝜙(𝐫, 𝐸, 𝑡) = 𝐹 (𝐫, 𝐸)𝜏(𝑡) (3.47) 

 Σ𝑔 =

𝐾𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝜙(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 (3.48) 

 

Σ𝑔 =  

𝐾𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 

=

𝐾𝐹 (𝐫, 𝐸) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝐹 (𝐫, 𝐸) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 

(3.49) 

 𝐷𝑔 =

𝐷(𝐫, 𝐸)∇2𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

∇2𝐹 (𝐫, 𝐸)𝜏(𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 (3.50)
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At this point, it is clear that the group constants are only dependent on position 
and energy. In the actual reactor calculation practice, one usually works with from 
two to 20 neutron energy groups. Such few group calculations are only reliable with 
reasonably accurate estimates of the group constants. Again, accurate estimates of the 
group constants can only be achieved if the intragroup fluxes, 𝜙(𝐸),  are accurately 
determined. The widely accepted strategy is to perform two multigroup calculations. 
In the first multigroup calculation, the spatial and time dependence is neglected or 
very crudely approximated, and a very finely structured multigroup calculation is 
performed to calculate the fine spectrum fluxes. The group constants for this fine 
spectrum calculation are usually pre-calculated and represented as a tabulated 
multigroup cross section data library. Furthermore, the group constants are averaged 
over each of the fine energy groups. An example of such a library is the IAEA WIMSD 
formatted data library. The IAEA WIMSD formatted data library offers 69 and 172 
fine group structures for nuclear reactor calculations. Fig. 3.3 shows the total cross 
section of U-235 in 69 and 172 fine energy groups. 

 

 

Figure 3.3: Multigroup neutron cross section plot for U-235. (Plot retrieved 
from International Atomic Energy Agency (IAEA) website, https://www-
nds.iaea.org/wimsd/xsplots.htm) 

 

 𝐷𝑔 =

𝐷(𝐫, 𝐸)∇2𝐹 (𝐫, 𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

∇2𝐹 (𝐫, 𝐸) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 (3.51)



CHAPTER 3 
MULTIGROUP METHOD AND CRITICALITY CALCULATION 

36 
 

 

Figure 3.4: An equivalent heterogeneous cell consisting of three different materials, 
i.e. fissile fuel (Σ1), fuel cladding (Σ2) and the coolant channel (Σ3), is homogenized. 
The heterogeneous cell is represented with an equivalent homogenized cell with the 
equivalent cross section Σeq. 

 

At first sight, a reactor core can be constructed using its basic lattice structures 
which are known as unit cells. The geometry of each of these unit cells is defined such 
that the entire reactor core can be build using repetitions of these unit cells. For 
instance, the unit cells forming a reactor core are illustrated in Fig. 3.4. Essentially, 
the spatial dependence of the group constants reflects the fact that the geometry is 
heterogeneous which compose of discrete uniform material zones. Here, a 
heterogeneous unit cell is made up of a few separated regions of materials. To be more 
specific, a fuel cell consists of four different types of heterogeneous regions, i.e. the 
fuel meat, cladding material and the adjacent coolant channel. Note also that these 
heterogeneous regions are represented with specific group constants characterizing 
the material contained in each region.  

To suppress the spatial dependency of the group constants, the heterogeneous 
unit cell is replaced with an equivalent homogenized unit cell. Consequently, a 
homogenized unit cell is defined such that the separated regions are “mixed” thus 
preserving the integral neutron behaviour. In this context, neutron behaviour is a 
sequence of events where various neutron-nucleus interactions take place. Thus, after 
the homogenization process, a set of homogenized group constants characterizing the 
homogenized material within the unit cell is obtained. A detailed procedure to 
calculate the homogenized group constants for the case of a TRIGA reactor core will 
be discussed intensively in Chapter 4. 
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3.5 Multiplication Factor 

Recall that in the previous section, the main working principle of a nuclear reactor is 
by tapping the energy released in fission reaction via the use of fission chain reaction. 
Such an essential idea is based on the fact that a fission neutron produced by the 
previous fission reaction will eventually induce another fission reaction. Thus, the 
neutrons that induce the fission reactions are known as the chain carriers. In normal 
nuclear engineering practice, it is desirable to ensure a steady-state chain reaction, 
which simply means a chain reaction that does not grow or decay away with time. 
Consequently, a nuclear engineer must design a reactor that is capable of inducing one 
fission reaction per fission neutrons produced by the previous fission reaction. Plus, 
certain factors that cause the fission chain reaction to degenerate have to be 
considered. Specifically, the remaining neutrons produced by the previous fission 
reaction could either be absorbed by means of disappearance reactions or will leak 
and escape out from the reactor.  

Such a neutron balance requirement can be expressed in mathematical form. To 
begin with, it is handy to consider the life cycle history of a single neutron. Essentially, 
the birth of a neutron usually begins as a result of a fission event. Then, the neutron 
will usually scatter for multiple times within the reactor region until it arrives at the 
point where its death or disappearance occurs. Also, some of the neutrons that were 
absorbed by fissionable nuclei will turn out inducing another fission reaction. This 
leads to the creation of a new generation of fission neutrons. Now, the quantity that 
describes the balance of neutrons within a nuclear reactor is known as the effective 
multiplication factor, which is defined as, 

Note that if 𝑘eff = 1, the number of neutrons produced in a reactor is equal to the 
number of neutron loss in a reactor. Consequently, the number of neutrons in any two 
consecutive fission generations will be the same. Plus, the chain reaction will become 
time-independent. For the case when 𝑘eff < 1, there will be more neutron loss in the 
reactor since the denominator of Eq. (3.52) is larger than its numerator. Accordingly, 
the fission chain is expected to die off and the reactor is said to be in the state of 
subcritical. Finally, if 𝑘eff > 1, the chain reaction is expected to grow exponentially, 
since more fission neutrons are produced during each successive fission generation. 
Such a condition is coined as supercritical.  

In conclusion, the effective multiplication factor plays an extremely important 
role in assessing the stability of a nuclear reactor. The calculation of 𝑘eff  
characterizing a specific reactor configuration and composition is often the main 
interest of most nuclear engineers. From this point, readers will find the rest of this 
book will be focusing on the development of various methods and procedures for 
performing this calculation.  

 
𝑘eff ≡

Number of neutrons born in a reactor

Number of neutrons loss in a reactor
 

≡
Number of neutrons in generation 𝑗

Number of neutrons in previous generation 𝑗 − 1
 

(3.52)
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3.6 Reactor k-Eigenvalue Equation 

With the available knowledge of neutron transport, it is now suitable to determine the 
composition and size of a particular reactor so that the reactor is critical, i.e. 𝑘eff = 1. 
Such a determination is crucial in the reactor core designing and management process 
since nuclear engineers will always desire to have a self-sustaining (critical) and a 
constant power-producing nuclear reactor. Inevitably, the existence of the time 
derivative in the multigroup equation given by Eq. (3.43) indicates that the number of 
neutrons in nuclear reactors is not always balanced over time. In reality, the state of a 
nuclear reactor always fluctuates over time. Therefore, assessing the state of neutron 
balance in a particular nuclear reactor using the time-dependent transport equation is 
not practical. Plus, such a practice can cause difficulties during the process of 
designing a self-sustaining nuclear reactor. 

Practically, determining the criticality of a nuclear reactor with a specific 
geometry and composition requires the time-averaging of the neutron transport 
equation. Here, time-averaging simply means that the average reactor behaviour over 
time is observed instead. Note also that a time-averaged transport equation is often 
called the static eigenvalue equation. One of the approaches to create a static 
eigenvalue equation is to force the time derivative of the transport equation 
(continuous form or multigroup form) to zero. Next, a scaling factor, 1 𝑘⁄ , on the fission 
term of the transport equation is introduced. To comprehend the reason behind the 
introduction of the scaling factor 1 𝑘⁄ , it is useful to first consider the multigroup 
diffusion equation given by Eq. (3.43). However, the time derivative of the multigroup 
diffusion equation is set to zero so that the equation is time-averaged and static. For 
this reason, 

 

1

𝑣𝑔

𝜕𝜙𝑔(𝐫, 𝑡)

𝜕𝑡

= 0

+ 𝛁 ⋅ 𝐷𝑔(𝐫) 𝛁𝜙𝑔(𝐫) + Σt
𝑔
(𝐫) 𝜙𝑔(𝐫)

= Σs
𝑔 →𝑔

(𝐫) 𝜙𝑔 (𝐫)

𝐺

𝑔 =1

+ 𝜒𝑔 𝜈𝑔 Σ
f
𝑔

(𝐫)𝜙𝑔 (𝐫)

𝐺

𝑔 =1

Fission Term

 

𝑔 = 1,2,3, … , 𝐺 

(3.53)

Recall that the right-hand side of Eq. (3.53) indicates the gain of neutrons within 
the reactor and the left-hand side of Eq. (3.53) indicates the loss of neutrons from the 
reactor. Setting 𝜕𝜙𝑔 𝜕𝑡⁄ = 0 forces the net gain of neutrons to be equal with the net loss 
of neutrons from the reactor, and such condition only possible when the reactor is 
critical. As a result, Eq. (3.53) has no general solution, unless the exact combination 
of the core composition, geometry and group constants such that the reactor is critical 
is just happened to hit. The only way to alleviate this issue is to introduce the 1 𝑘⁄  factor 
to the fission term of Eq. (3.53). Henceforth, this will mathematically scale the fission 
term so that the equation satisfies for any reactor condition, even if the reactor core is 
not critical, i.e. subcritical or supercritical. Thus, 
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𝛁 ⋅ 𝐷𝑔(𝐫) 𝛁𝜙𝑔(𝐫) + Σt
𝑔
(𝐫) 𝜙𝑔(𝐫)

= Σs
𝑔 →𝑔

(𝐫) 𝜙𝑔 (𝐫)

𝐺

𝑔 =1

+
1

𝑘
𝜒𝑔 𝜈𝑔 Σ

f
𝑔

(𝐫)𝜙𝑔 (𝐫)

𝐺

𝑔 =1

 

𝑔 = 1,2,3, … , 𝐺 

(3.54)

For simplicity, an operator T is introduced such that, 

 
T𝑔𝜙𝑔 ≡ 𝛁 ⋅ 𝐷𝑔 𝛁 + Σt

𝑔
𝜙𝑔 

= 𝛁 ⋅ 𝐷𝑔 𝛁𝜙𝑔 + Σt
𝑔
 𝜙𝑔 

(3.55)

Finally, Eq. (3.54) can be written into its equivalent matrix form: 

 

 

(3.56)

It is also convenient to simplify the form of Eq. (3.56) by introducing several 
matrix operators, 𝐓, 𝐒 and 𝐅, such that 

 𝐓Φ = 𝐒Φ +
1

𝑘
𝐅Φ (3.57)

where, 

 𝐓 ≡ diag T1, T2, … , T𝐺  (3.58)

 

 

(3.59) 

and 
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(3.60)

Also, the group flux vector, Φ, is given by, 

 Φ ≡ (𝜙1 𝜙2 … 𝜙𝐺)T (3.61)

Next, it is suitable to re-arrange Eq. (3.57) into, 

 (𝐓 − 𝐒)−1𝐅Φ = 𝑘Φ (3.62)

If the above matrix equation is carefully analysed, the operator (𝐓 − 𝐒)−1𝐅 is a square 
matrix, which has the dimension of 𝐺 × 𝐺. So, Eq. (3.62) is actually an eigen-equation 
with Φ, a column vector identified as the eigenvector and the scalar value 𝑘 as the 
eigenvalue. Recall that the whole point of neutron transport theory is to solve the 
neutron flux, which in this case the eigenvector Φ. Plus, the existence of the 
eigenvalue, 𝑘, in Eq. (3.62) allow nuclear engineers to use it as a tool for searching 
the right combination of reactor composition and geometry such that the reactor is 
critical.  

At this level, the readers might question on how to solve the eigen-equation in 
Eq. (3.62) so that Φ and 𝑘 are determined. One must also note that the reactor 
composition and geometry will change the characteristics of the square matrix 
operator (𝐓 − 𝐒)−1𝐅. Thus, solving the eigen-equation yields a specific value of 𝑘 and 
a specific group flux vector, Φ. Essentially, the solution of the eigenvalue problem 
given by Eq. (3.62) can be accomplished by using the standard common technique in 
numerical analysis known as the power iteration method.  

Recall that in a nuclear reactor, neutrons serve as the fission chain reaction 
carrier. Additionally, a neutron from the previous generation may induce another 
fission reaction, creating neutrons of the next fission generation. To begin with, it is 
customary to introduce an integer denoting the current fission generation number, 𝑗. 
Firstly, notice that if the group flux vector of the neutron population from the previous 
fission generation, Φ(𝑗−1) is known, then it is possible to determine the group flux 
vector of the current fission generation, Φ(𝑗) using Eq. (3.62), where, 

 Φ(𝑗) =
1

𝑘(𝑗−1)
(𝐓 − 𝐒)−1𝐅Φ(𝑗−1) (3.63)

Unfortunately, the true value of 𝑘 is unknown and the true group flux vector of the 
previous generation is not known. Consequently, the issue is resolved by estimating 
the initial guess of the group flux vector, Φ(0) and the initial guess of the effective 
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multiplication factor, 𝑘(0). Thus, Φ(0) and 𝑘(0) are used to obtain Φ(1) using Eq. (3.63) 
whereas 𝑘(1) is estimated using an equation that will be derived later. This successive 
generation iteration continues until a sufficiently large number of iterations 𝑗 so that 
the Φ(𝑗) and 𝑘(𝑗) converge to their corresponding true value. The convergence of Φ(𝑗) 
and 𝑘(𝑗) can be proven mathematically. Throughout the iteration, the value of 𝑘(𝑗) and 
Φ(𝑗) are self-adjusted until the combination of these quantities satisfies the eigen-
equation in Eq. (3.63). Eventually, this successive generation iteration will guarantee 
to converge regardless of the value of Φ(0) and 𝑘(0) prescribed during the starting point 
of the iteration. For a large number of iterations,   

 Φ(𝑗) ≅
1

𝑘(𝑗)
(𝐓 − 𝐒)−1𝐅Φ(𝑗) (3.64) 

Thus, if Eq. (3.64) is integrated over the entire space, it is reasonable to define the 
current estimate of the effective multiplication factor, 𝑘(𝑗) as, 

 𝑘(𝑗) ≅

(𝐓 − 𝐒)−1𝐅Φ(𝑗)𝑑3𝑟

1
1

Φ(𝑗) 𝑑3𝑟

 (3.65) 

Finally, by using the above formula it is now possible to compute a new guess 
of the effective multiplication factor, 𝑘(𝑗). In summary, the iterative algorithm of 
finding the solution of the eigenvalue problem deterministically is given in Fig. 3.5. 

 
Figure 3.5: The summary of power iteration algorithm. 

 

START 

INITIAL GUESS OF Φ(0) AND 𝑘(0) 

SET 𝑗 = 1 

COMPUTE Φ(𝑗) AND 𝑘(𝑗) USING Φ(𝑗−1) 

AND 𝑘(𝑗−1) ACCORDING TO EQS. 3-63 
AND 3-65 RESPECTIVELY. 

Φ(𝑗) AND 𝑘(𝑗) 
CONVERGED? 

END 
SET 𝑗 = 𝑗 + 1 

YES 
NO 
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CHAPTER 4 

THEORIES AND LAWS IMPLEMENTED IN 
TRIMON1 

 

 

 

 

 

 

In the previous chapters, most of the neutron transport theorems  have been presented 
in detail, and these theorems will become the foundation of the development of a 
multigroup Monte Carlo code for TRIGA reactors. This chapter outlines the details of 
the development of TRIMON (TRIGA Monte Carlo Code), a next-generation reactor 
code that integrates diffusion-theory-type group cross sections into the Monte Carlo 
method for TRIGA reactors. Also, this hybrid combination speeds up stochastic 
simulations via homogenization of complex local core regions. TRIGA reactors are 
currently installed in 24 different countries, therefore, a robust core management code 
must be written for their safety analysis. Also, TRIMON is written in Fortran90 
programming language. In fact, Fortran90 is chosen due to its simple and elegant 
modular programming paradigm that enables the developers and users to emphasize 
on the theoretical implementation of the code without the need of advanced 
programming knowledge. TRIMON incorporates critical features that improve certain 
functionalities that are less optimal in most state-of-the-art Monte Carlo codes such 
as direct integration of local fuel burnup in core calculation, sophisticated reactor core 
design considerations and simulation time improvements in complex core 
configurations. TRIMON also excludes the intricate jargon related to the core 
geometry and tally specifications required by most general multi-purpose Monte 
Carlo codes during the process of translating TRIGA core problems. 

 

1 This chapter is adapted from the following published research article: Omar, M. R., Karim, J. A., & 
Yoon, T. L. (2019). The development of a multigroup Monte Carlo code for TRIGA reactors. Nuclear 
Engineering and Design, 342. 
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4.1 Introduction to TRIGA Reactors 

TRIGA is a commercial research reactor built by General Atomics, USA. Now, the 
reactor has been installed in 24 different countries. The reactor has been used for many 
diverse applications such as radioisotopes production, non-destructive testing, 
research on the properties of matter and for education and training. The reactor is a 
pool-typed water reactor and the reactor core is loaded with hydride fuel-moderator 
element, specifically U-ZrH. Most neutron moderations take place in the fuel element 
itself and the neutron moderation is mainly due to H in H-Zr (Henry, Tiselj, & Snoj, 
2017). The reactor utilises demineralized water as coolant and moderator, where the 
loaded fuels are cooled by the flow of the coolant through the reactor core through 
natural convection or by forced cooling which depends on the reactor design. 

TRIGA reactors are well recognised for its built-in safety characteristic due to 
a physical property of U-ZrH fuel. Here, TRIGA reactors have large prompt negative 
temperature coefficient. This implies that it is adequate to control an unexpected large 
insertion of positive reactivity to the reactor core. The fuel meat is a solid, 
homogeneous alloy of U-ZrH with the uranium enriched to 20% U-235. Also, the fuel 
meat is clad by a 0.051cm thick aluminium or stainless steel (SUS304) can.  

Reaktor TRIGA Puspati (RTP) is a 1 MWth research reactor that has been 
installed in 1982 at Malaysian Nuclear Agency, Bangi, Malaysia. RTP core is a 
cylindrical-shaped core holding 127 designated core locations to accommodate fuel 
elements and other non-fuel elements such as control rods and irradiation facilities. 
The reactor core and the reflector assembly are mounted at the bottom of an 
aluminium tank situated inside the concrete shielding. The reactor core and 
experimental facilities are enclosed by a high-density concrete shielding. The reflector 
is made up of graphite and the reactor assembly is equipped with four boron carbide 
control rods. To provide vertical shielding, water is filled about 5m above the reactor 
core.  Each element is arranged in seven concentric rings designated as Ring-A, Ring-
B, …, Ring-G with 1, 6, 12, 18, 24, 30 and 36 core locations respectively. 

4.2 TRIGA Core Unit Cells and Core Meshing 

Theoretically, a reactor core can be built using its primary lattice structures which are 
identified as unit cells. The geometry of the unit cells is specified such that the 
complete reactor core can be formed using copies of these unit cells. For example, the 
unit cells forming a TRIGA core are illustrated in Fig. 4.1. A heterogeneous unit cell 
is composed of some separated regions of materials. In contrast, a homogenized unit 
cell is assigned such that the separated regions are “blended” while maintaining the 
integral neutron behaviour. In this context, neutron behaviour is a series of events 
where numerous neutron-nucleus interactions take place. 

Essentially, a homogenized macroscopic neutron cross section, Σ, is defined 
such that when they are used in the calculation of a homogenized unit cell, the net 
neutron leakage, the total neutron absorption and the total reaction rate remain the 
same as obtained in the calculation of the heterogeneous unit cell (International 
Atomic Energy Agency (IAEA), 1980). In TRIMON, each unit cell represents a 
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homogenized reactor sub-region with constant neutron cross section. Customarily, 
when tracing the random walks of a neutron history, the current unit cell which holds 
the neutron is mapped so that the value of Σ for the cell can be retrieved and used for 
simulating the succeeding nuclear events.  

 
Figure 4.1: An assembly of unit cells forming a TRIGA reactor core. 

 

To apply a similar concept to a TRIGA core, a unit cell is identified using cell 
indices 〈𝑖, 𝑘, 𝑙〉. The radial position of the unit cell, 𝑅𝑖 is determined using the radial 
index, 𝑖. The angular bearing of the unit cell, 𝜃𝑖,𝑘 can be determined using 
combinations of the radial index and the angular index, 〈𝑖, 𝑘〉. The cylindrical reactor 
core is sliced into several layers of equal thickness, Δ𝑧. Dividing the core into several 
layers will identify the 𝑧-axis position of the unit cell, 𝑧𝑙. A core layer can be 
determined using the core layer index, 𝑙. The position, 𝐏, of a unit cell in the 
cylindrical coordinate system can be mapped using the set of cell indices 〈𝑖, 𝑘, 𝑙〉. The 
relationship is defined as, 

 𝐏 = 𝑅𝑖 𝐞𝒓 +
𝜋

6

2𝑘 − 1

𝑖 − 1
𝐞𝜽 + 𝑙Δ𝑧 𝐞𝒛, (4.1)  

where 𝐞𝒓, 𝐞𝜽 and 𝐞𝒛 are the basis vectors that define the cylindrical coordinates.  

4.3 Cell Homogenization 

In common, the homogenization method starts with the transport calculation at the 
heterogeneous unit cell level. Subsequently, a heterogeneous unit cell is represented 
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using its equivalent homogeneous unit cell of equal volume. Normally, a unit cell that 
includes fuel materials is assigned as a fuel cell. In a typical TRIGA core, a single fuel 
cell comprises a set of fuel regions plus the surrounding coolant water gap. A Zr rod 
is positioned at the centre of the fuel element (see Fig. 4.2). In TRIMON, only the 
active part of the fuel element is considered since it is the central part that drives the 
reactor core power generation. 

  

Figure 4.2: A schematic diagram of a TRIGA standard fuel element. 



PART I 
 THEORETICAL BACKGROUND OF TRIMON 

47 
 

 

Figure 4.3: An overview of the steps involved in the procedure of homogenizing a 
unit cell. 

 

Examine the illustration of a TRIGA core shown in Fig. 4.3. Suppose that a 
heterogeneous unit cell is taken from the core. For an annular TRIGA reactor core, 
one can effectively substitute a heterogeneous unit cell with a similar heterogeneous 
annular cell of equal volume. Following, the annular unit cell is accurately modelled 
in two-dimensional geometry to approximate the heterogeneous unit cell. At this level, 
the transport calculation of the two-dimensional model is performed to get the 
reference flux spectrum for the next homogenization step. 

Neutrons will experience isotropic scattering as they arrive the cell boundary of 
the two-dimensional model (Trkov & Ravnik, 1994). Therefore, the transport problem 
at the unit cell level is indistinguishable to one involving a huge reactor core which is 
formed by many identical unit cells. Besides, the heterogeneous modelling method 
intends to achieve the best estimate of the original reactor core. 

Next, the homogenization method continues with the use of the Effective 
Diffusion Homogenization (EDH) method (Trkov & Ravnik, 1994) for obtaining the 
homogenized neutron cross sections. Essentially, EDH method gives the approximate 
treatment of the radial leakage of the unit cell. Aside from maintaining the total 
reaction rates, the radial leakage in both homogeneous and heterogeneous unit cells is 
also conserved. So, this helps to decouple transport calculations of the unit cell from 
its surroundings. In essence, TRIMON employs the homogenization steps outlined by 
(Trkov & Ravnik, 1994). 

Finally, a set of homogenized group neutron cross sections is obtained from the 
unit cell. The unit cell homogenization method is repeated for all unit cells within the 
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reactor core. The calculated homogenized group neutron cross sections are grouped 
and compiled into a TRIGA cross section file (.txs file) and serve as a lookup table of 
the homogenized cross sections for the next full core Monte Carlo simulation. 

4.4 Fuel Burnup Effect 

In TRIMON, fuel burnup accumulation due to previous core operations is not ignored 
during cross section data pre-processing. Fuel depletion correction of neutron cross 
sections implemented in TRIMON does not need any additional fuel depletion codes 
as existing fuel depletion empirical relations are used. Fuel depletion calculation in 
TRIMON is based on the pre-defined correlations of the remaining mass fraction of 
U-235 in per cent, 𝑏, and its equivalent fuel burnup in MWd. Also, each predefined 
correlation is defined for a specific TRIGA fuel type, i.e. standard U-ZrH fuel types 
such as FE08 for 8.5%wt U, FE12 for 12%wt U and FE20 for 20%wt U. 

In TRIMON, a fuel element is equally sliced axially into several fuel unit cells, 
where each unit cell holds a specific burnup level, 𝑏. The burnup, 𝑏, for each fuel unit 
cell in per cent U-235 is given by the general power series correlation, 

 𝑏 = 𝛽𝑗𝑝
cell
𝑗

𝑁

𝑗=1

(Δ𝑡)𝑗  (4.2) 

where 𝑁  is the order of the series, 𝛽𝑗  are the coefficients of the series, 𝑝cell is the 
fission power deposited in the cell, and Δ𝑡 is the burnup increment in days. In 
TRIMON, the pre-set values of 𝛽𝑗  were determined based on the WIMS calculations 
done by (A. Persic, Slavic, Ravnik, & Zagar, 1998)  and the results of the calculation 
for each different standard U-ZrH fuel types are shown in Fig. 4.4. Plus, each type of 
fuel is assigned to a specific set of 𝛽𝑗 . It is important to note that the values of 𝛽𝑗  can 
be prescribed by the user through the main code input file. During each cell 
calculation, the fuel density and enrichment are corrected according to the prescribed 
value of 𝑏 so that the number density of the fuel region within the cell can re-
calculated. 
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Figure 4.4: Fuel burnup in % U-235 correlations for different 
standard U-ZrH fuel types, 8.5%wt (ST8), 12%wt (ST12) and 
20%wt (LEU). (A. Persic et al., 1998) 

4.5 Fuel Temperature Effect 

There is a clear correlation between the average fuel burnup and fuel temperature 
because the total fission energy liberated by the fuel material is largely exchanged into 
thermal energy. Inescapably, fuel temperature instigates the Doppler broadening of 
the neutron cross section’s resonance region (Carter & Cashwell, 1975), therefore it 
greatly affects the heterogeneous cell’s flux spectrum for the purpose of 
homogenization calculation. Principally, the temperature of a fuel cell is dependent 
on its position inside the core. For a TRIGA  reactor, the temperature of a fuel cell is 
stemmed based on the empirical formula recommended by (Peršič et al., 2017),  

 𝑇cell = 𝑇cool + 𝑎𝑛𝛼𝑟𝛼𝑧
𝑚

𝑀
1 −

𝑏

100
𝑃

𝑛
𝑁

𝑛=1

 (4.3) 

where: 

𝑇cool is the temperature of the coolant, 
𝑁   is the power series order, 
𝑎𝑛  is the coefficient of the power series, 
𝛼𝑟  is the radial power form factor in the fuel cell location, 
𝛼𝑧  is the axial power form factor at the fuel cell location, 
𝑚  is the mass of Uranium in the fuel rod, 
𝑀   is the total mass of Uranium within the reactor core, 
𝑏  is the fuel rod burnup in per cent, and, 
𝑃   is the nominal core power. 
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The fuel cladding temperature is provided by the average of 𝑇cool and 𝑇cell. The 
values of constants, 𝑎𝑛, are verified experimentally and needs to be indicated by the 
user in the code input. In TRIMON, Eq. (4.3) can be expressed as a piecewise 
function, such that a different set of 𝑎𝑛 is designated to a different cell power interval. 

4.6 Power Form Factors 

The power form factor, 𝛼, of a reactor core portrays the profile of the power 
distribution inside a reactor core. In fact, it regulates the fuel temperature distribution 
relative to the hottest spot within a reactor core. Bear in mind that fuel temperature 
Doppler broadens a neutron cross section’s resonance region, thus, 𝛼 is a notable tool 
for scrutinizing the accuracy of the core simulation results. In the extent of this work, 
there are two types of power form factor to be pondered – the radial power form factor, 
𝛼𝑟 and the axial power form factor, 𝛼𝑧.  

Meanwhile, TRIMON provides three-dimensional power distribution, the radial 
and axial power form factors can also be determined using TRIMON by the use of the 
algorithm summarized in Fig. 4.5. Notice also that power peaking factors can be 
calculated according to the straightforward method outlined by (Snoj & Ravnik, 
2008).  

 
Figure 4.5: Simplified steps involved in the calculation of power 
peaking factors in TRIMON. 
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4.7 Homogenized Multigroup Monte Carlo Method 

The Monte Carlo method is a technique of unravelling a deterministic problem by a 
stochastic approach by the use of neutron random walks. A number 𝑀  of independent 
observations (e.g. neutron histories) are accumulated and the result is obtained from 
the averaged observation. The Monte Carlo method is frequently applied to 
deterministic problems that are hard to solve by deterministic methods. The main 
benefits of the Monte Carlo method include its straightforwardness where the 
transport equation does not have to be formulated to obtain the neutron flux in the 
reactor. And also, it applies to complicated problems without simplifications, for 
instance, it can model an exact complicated nuclear reactor core geometry.  

In the Monte Carlo method, each neutron is simulated from the birth of a neutron 
until the death event of the neutron (i.e. due to a disappearance reaction or leakage). 
However, the Monte Carlo method presented in this work is distinctive from the usual 
method, where homogenized group neutron cross-section data is employed to enhance 
the simulation efficiency. In the conventional Monte Carlo method, non-homogenized 
neutron cross section data are used, which in fact increasing the complexity of the 
simulation. According to the homogenization theory discussed in Chapter 3, a non-
homogenized or heterogeneous region may comprise of many different types of 
materials with different cross section values. Thus, in the conventional method, more 
stochastic calculations need to be accomplished to accommodate all of the different 
types of materials. However, a homogenized region comprised of a single pseudo-
material with a single group neutron cross section will effectively reduce the number 
of stochastic calculations compared with the conventional Monte Carlo method. 

4.7.1 Overview of Monte Carlo Method Implemented in TRIMON 

In TRIMON, neutrons are anticipated to be travelling in a straight line in the 
direction 𝛀 = (𝑢, 𝑣, 𝑤) from an initial position, 𝐫0. Also, it assumes that the neutron 
is only generated by a fission reaction. Other types of neutron production are 
disregarded, and their effects are insignificant. For occasion, nearly all (n, 𝑥n) 
reactions happen at high incident neutron energy, normally beyond 10MeV. 
Consequently, such a reaction is atypical since a huge fraction of neutrons in a thermal 
reactor holds an energy regime of less than 10MeV. Neutron production reaction 
caused by other sorts of particles is also abandoned since these particles are not 
tracked.  

As a general rule, when a neutron journeys within a homogenized unit cell, there 
is a likelihood that it will strike a nucleus of the homogenized unit cell material. 
Throughout this collision, there are only three types of reactions counted – neutron 
absorption, neutron elastic scattering and fission reaction. It is sensible to bring to 
mind that the Monte Carlo method designated in this research utilizes homogenized 
neutron cross sections. Then, it is crucial to highlight that all neutron behaviours 
within the homogenized unit cell are virtual.  

Nevertheless, when these virtual behaviours are integrated over the whole 
volume of the unit cell, they bear a resemblance to the overall behaviour of the 
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neutrons when the heterogeneous neutron cross sections are used in the simulation. 
Astonishingly, a similar idea is spotted in the delta tracking method in Monte Carlo 
explained by (Leppänen, 2010). In delta tracking method, the concept of virtual 
collision is employed, and it effectively homogenized the material total cross section 
in a way that the total neutron path length within a whole geometry is conserved. 

4.7.2 Distance to Next Collision and Random Walks 

As a rule, a neutron is set off at a position 𝐫0 and stops at the point of the next collision 
event, 𝐫c. Afterwards, the current unit cell, 〈𝑖, 𝑘, 𝑙〉, is mapped where the position 𝐫0 
is embedded inside 〈𝑖, 𝑘, 𝑙〉. Consequently, the distance to the next collision, ‖𝐫c − 𝐫0‖, 
can be calculated, 

 ‖𝐫𝑐 − 𝐫0‖ = −
ln 𝜁

Σ̅t,𝑖𝑘𝑙

 (4.4)

where Σt,𝑖𝑘𝑙 is the total homogenized neutron cross section of the unit cell 〈𝑖, 𝑘, 𝑙〉 and 
𝜁  is a random number where 𝜁 ∈ [0,1).  

Trailing the transport process further, the distance to the nearest boundary of the 
current unit cell, ‖𝐫𝑏 − 𝐫0‖, along the neutron trajectory direction, 𝛀, is calculated. If 
the distance to the next collision event is larger than the distance to the nearest cell 
boundary, i.e., ‖𝐫𝑐 − 𝐫0‖ > ‖𝐫𝑏 − 𝐫0‖, subsequently, the neutron is transported to the 
nearest boundary. Or else, the neutron is transported to the next collision location, 𝐫𝑐. 
To sum up, the final location of the neutron is given by, 

 𝐫 = 𝐫0 + min(‖𝐫𝑐 − 𝐫0‖, ‖𝐫𝑏 − 𝐫0‖) 𝛀 (4.5) 

At the collision site, the neutron will progress for a neutron–nuclear interaction. 
Contrariwise, if the neutron is transported to the cell boundary, the distance to the next 
collision will be calculated using the total neutron cross section of the neighbouring 
unit cell. This process repeats until the neutron is absorbed by a nucleus or leak out of 
the reactor core. As soon as the neutron is absorbed, the simulation ends and the next 
neutron from the fission source bank is simulated. 

4.7.3 Distance to the Nearest Cell Boundary 

At first, a set of boundary surfaces, β, that characterize the boundary of a 
homogeneous unit cell is taken into consideration. Easily, the distance of a neutron to 
each boundary surface 𝑏 ∈ β along the neutron flight direction 𝛀 is given 
by ‖𝐫𝑏 − 𝐫0‖. Consider a neutron at 𝐫  is moving in the direction 𝛀. To 
calculate ‖𝐫𝑏 − 𝐫0‖, one must solve the surface equation of the boundary of the unit 
cell, 

 𝑓𝑠 𝐫0 + ‖𝐫𝑏 − 𝐫0‖𝛀 = 0 (4.6) 
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where 𝑓𝑠(𝐫) is the surface equation of 𝑏. 

It is essential to mention that the solution to Eq. (4.6) can be more than one and 
can be real or complex. Undoubtedly, if the solutions are all complex, therefore the 
direction of flight will never cross with the surface. Then again, a real solution which 
is less than zero implies that the surface is behind the neutron flight path. Preferably, 
a positive real solution is always chosen. To finish, the minimum of the positive 
solutions is selected to be the value of ‖𝐫𝑏 − 𝐫0‖.  

4.7.4 Sampling a Reaction at the Collision Site 

TRIMON distinguishes three major neutron-nucleus interactions – neutron capture, 
neutron elastic scattering and fission. In addition, neutron absorption includes entirely 
other types of reaction such as (n, p), (n, 𝛼), etc. Moreover, all of these reactions 
involve capturing a neutron to give off secondary particles except neutrons. Focusing 
on fission reaction, it is regarded as an absorption reaction because a nucleus absorbs 
a neutron before dividing into two daughter nuclei in the course of fission event. 

In effect, the homogenized material is supposed to contain a single type of 
nucleus with a set of homogenized group cross sections that is constant throughout 
the unit cell. Consequently, one does not need to sample any nuclide of collision. First 
of all, the total macroscopic cross section of the unit cell is retrieved from the 
homogenized group neutron cross section data. In the second place, if a neutron in 
energy group 𝑔 experiences collision with a nucleus within a unit cell, the first step is 
to decide whether the neutron is absorbed by the nucleus. To finish, this procedure is 
based on the algorithm outlined by (Romano & Forget, 2013), 

1. A random number, 𝜁 , is obtained from the random number generator. 
2. The neutron is killed if the following condition is met, 

𝜁 <
Σa

𝑔
− Σf

𝑔

Σt(𝑔)
 (4.7)  

where Σa
𝑔
 is the homogenized absorption cross section, Σf

𝑔
 is the homogenized 

fission cross section and Σt
𝑔
 is the homogenized total macroscopic cross section 

the unit cell. Finally, the neutron history tracking is terminated and the next 
neutron in the fission bank is simulated. 

4.7.5 Multi-Group Scattering 

Basically, the neutron energy and direction are transformed after a neutron scattering 
event. Therefore, the outgoing energy group 𝑔′ and the outgoing direction 𝛀′ of the 
neutron following a scattering event is calculated. If a homogeneous group cross 
section data employs 𝐺 neutron groups, thus the group scattering cross section from 
the incident energy group 𝑔 to all existing outgoing energy groups are queried from 
the homogenized cross section data table.  
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At the initial stage of processing a group scattering event, a random number 𝜁 ∈
[0,1) is selected from the random number generator. Then, the outgoing energy group 
of the neutron is chosen using the inverse sampling method, such that the value of 𝜁  
is compared to the cumulative distribution function, 𝐹 (𝑔 → 𝑔′), of the outgoing 
energy group, 𝑔′, for the given incoming energy group, 𝑔. The cumulative distribution 
function can be stated as, 

 𝐹𝑔(𝑔 → 𝑔 ) =
Σs

𝑔→𝛾

Σt
𝑔

− Σa
𝑔

1≤𝛾≤𝑔

 (4.8) 

where Σs is the homogenized scattering cross section, Σt  is the homogenized total 

neutron cross section and Σa is the homogenized absorption cross section. Suitably, 

the term Σt − Σa is the total homogenized scattering cross section, in any case of any 
outgoing energy group. A similar method can be done to pick out the outgoing angle 
of the neutron. Contrariwise, one can sample the value of 𝜇 by making use of the 
following relation if the scattering direction is expected to be isotropic, 

 𝜇 = 2𝜁 − 1. (4.9)  

Automatically, the outgoing neutron direction can be calculated given that the 
outgoing energy and scattering cosine have been determined. The scattering cosine 𝜇 

denotes the cosine of the angle between incident neutron direction, 𝛀, and the 

outgoing neutron direction 𝛀′. The scattering cosine is expressed as, 

 𝜇 = 𝛀 ⋅ 𝛀 (4.10)  

Accordingly, it is probable to determine 𝛀′ by sampling an azimuthal angle 𝜙 ∈

[0,2𝜋) from the uniform distribution. If the components of 𝛀′ and 𝛀 are given as 

(𝑢 , 𝑣 , 𝑤′) and (𝑢, 𝑣, 𝑤) respectively, the relationship between 𝛀′ and 𝛀 is given by 
(Romano & Forget, 2013), 

 𝑢′ = 𝜇𝑢 +
1 − 𝜇2

1 − 𝑤2
(𝑢𝑤 cos 𝜙 − 𝑣 sin 𝜙) (4.11)  

 𝑣′ = 𝜇𝑣 +
1 − 𝜇2

1 − 𝑤2
(𝑣𝑤 cos 𝜙 − 𝑢 sin 𝜙) (4.12)  

 𝑤′ = 𝜇𝑤 + √1 − 𝜇2√1 − 𝑤2 cos 𝜙 (4.13)  

   

4.7.6 Fission Reaction 

Despite the fact that fission is considered as an absorption reaction (A. Persic et al., 
1998), TRIMON deals with fission similarly to inelastic scattering. This is because 
fission neutrons are set off as the outcome of the fission event. At the early step of a 
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fission process, the average number of fission neutrons, 𝜈𝑔, is estimated based on the 
incoming neutron energy group, 𝑔. In particular, the correlation relation between 𝑣𝑔 
and 𝑔 is given by (A. Persic et al., 1998) 

 𝜈𝑔 = 2.55 − 0.11
𝑔 − 1

max(1, 𝐺 − 1)
 (4.14)  

where 𝐺 is the total number of energy groups used in the simulation. After that, the 
total number of neutrons to be emanated after the fission event, 𝜈, is predicted using 
the method summarized by (Romano & Forget, 2013). Then again, homogenized 
cross sections are used instead. The value of 𝜈 can be determined using, 

 𝜈 =
𝑊 𝜈𝑔Σf

𝑘𝑛−1Σt

 (4.15)  

where 𝑊  is the neutron weight and 𝑘𝑛−1 is the value of 𝑘eff  from the previous fission 
cycle. Here, the value of 𝜈 is rounded to the nearest integer. 

Later, the outgoing energy of these fission neutrons is sampled. It is appropriate 
to make known to the cumulative fission energy group spectrum, 𝐹 (𝑔′), which is 
defined as the cumulative probability of having energy group 𝑔′ as the outgoing fission 
neutron energy group. In most cases, one can sample the outgoing energy of a fission 
neutron from Watt Distribution. In summary, 𝐹 (𝑔′) is expressed as, 

 𝐹 (𝑔′) = d𝐸 𝑐 e−𝑎𝐸 sinh √𝑏𝐸  
𝛾𝛾≤𝑔

 (4.16)  

where 𝑐 = 0.453, 𝑎 = 1.036, 𝑏 = 2.29 (Duderstadt & Hamilton, 1976) and 𝐸′ is the 
outgoing energy variable. Notice that the integration limits are the energy boundaries 
that define the entire outgoing energy group 𝛾 . Consequently, a random number, 𝜁  is 
obtained from the random number generator and the outgoing energy group is 
determined using the inverse sampling method (Ross & Ross, 2013) where the value 
of 𝜁  is compared to 𝐹 (𝑔′) and the corresponding value of 𝑔′ is determined. 

The finishing step is to sample the outgoing direction, 𝛀′, of the fission neutron. 
In TRIMON, the outgoing angle of a fission neutron is isotropic at all instances. 
Certainly, the algorithm used to sample the outgoing direction of a neutron after 
isotropic scattering is used for predicting the outgoing direction of a fission neutron. 

4.7.7 Cell Flux Tally Scoring and Calculation of Fuel Element Power 

TRIMON make use of track length estimators when collecting flux tallies of an entire 
volume of a unit cell. Nevertheless, tallies collection is not done for a volume lesser 
than the volume of the unit cell due to unit cell homogenization. Actually, all 
collisions that occur inside a homogenized unit cell are virtual, thus, tallies 
accumulation for a volume smaller than the unit cell is improper.  

According to (Romano & Forget, 2013), the derivation of track length flux 
estimator begins with the volume integrated flux for a specific neutron energy group, 
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 𝑉cell 𝜙𝑔 = ψ(𝐫, 𝛀, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝛀 𝑑𝑟 𝑑𝑡  (4.17)  

where ψ is the angular flux and 𝑉cell is the volume of the unit cell of concern. Observe 
also that ψ can be rewritten in terms of the neutron density function, 𝑁(𝐫, 𝐸, 𝑡), 
therefore,  

 𝑉cell 𝜙𝑔 =   𝑣𝑁(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝑟 𝑑𝑡, (4.18)  

where 𝑣 is the average neutron speed. Using the basic classical mechanics' formula, 
𝑑𝑡 = 𝑑𝑙/𝑣, yields, 

 𝑉cell 𝜙𝑔 =   𝑁(𝐫, 𝐸, 𝑡) 𝑑𝐸
𝐸𝑔−1

𝐸𝑔

𝑑𝑟 𝑑𝑙 . (4.19)  

From Eq. (4.19), the ∫ 𝑑𝑙 term indicates that the total distance travelled by any 
neutrons in the entire cell must be calculated. The remaining terms indicate that the 
number of neutrons in energy group 𝑔 at any position within the unit cell needs to be 
accumulated. Consequently, the track length estimator of the relative flux for neutron 
energy group 𝑔 is given by, 

 𝜙𝑔(𝑖, 𝑘, 𝑙) =
1

𝑊
𝑤𝑘(𝑔)𝑙𝑘,

𝑘∈𝜆

 (4.20)  

where 𝜆 is the set of all tracks within the unit cell ⟨𝑖, 𝑘, 𝑙⟩. 

In the cylindrical coordinate system, the power radiated by a fuel element, 𝑃el, 
is given as (A. Persic et al., 1998), 

 𝑃el = 𝑝0   𝜙(𝑟, 𝜃, 𝑧) Σf (𝑟, 𝜃, 𝑧) 𝑑𝑟 𝑑𝜃 𝑑𝑧
𝑉el

, (4.21)  

where 𝑝0 is the normalization factor, 𝜙 is the neutron flux and Σf  is the homogenized 
fission cross section. The normalization factor can be calculated using, 

 𝑝0 = 𝑃 𝜙(𝑟, 𝜃, 𝑧) Σf (𝑟, 𝜃, 𝑧) 𝑑𝑟 𝑑𝜃 𝑑𝑧
𝑉core

 
−1

. (4.22)  

Here, 𝑃  is the nominal power of the reactor core in kW. Recall that a unit cell can be 
identified using the cell indices ⟨𝑖, 𝑘, 𝑙⟩. A fuel element occupies the total volume of 
unit cells which have the same 𝑖 and 𝑘 values. Thus, the volume integral in Eqs. (4.21) 
and (4.22) can be numerically evaluated using, 

 𝑃el = 𝑝(𝑖, 𝑘) = 𝑝0  𝜙𝑔(𝑖, 𝑘, 𝑙) Σf
𝑔
(𝑖, 𝑘, 𝑙)

∀𝑔

𝑛𝑙

𝑙=1

, (4.23)  

where 𝑛𝑙 is the total number of core layers, and 

 𝑝0 = 𝑃  𝜙𝑔(𝑖, 𝑘, 𝑙) Σf
𝑔
(𝑖, 𝑘, 𝑙)

∀𝑔∀(𝑖,𝑘,𝑙)

−1

. (4.24)  
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Note also that in Eq. (4.23), the summations include all neutron energy groups for all 
unit cells within the fuel element channel. On the other hand, the summations in Eq. 
(4.24) include all neutron energy groups for all unit cells within the reactor core. 

4.8 Monte Carlo Criticality Calculation in TRIMON 

In general, criticality calculation, or sometimes known as eigenvalue calculation is a 
transport simulation of neutrons studying the ability of a system, i.e. a nuclear reactor 
core, to sustain a fission chain reaction. In essence, TRIMON employs the Monte 
Carlo power iteration method to perform the criticality calculation of a TRIGA 
reactor. Recall that the Monte Carlo power iteration method necessitates history 
tracking of a finite number of neutrons from one generation to another. Conveniently, 
these generations are recognized as MC cycles. If fission happens during history 
tracking, the location of the fission site, the outgoing energy group and direction of 
the fission neutron and the weight of the neutron are kept for the use in the next MC 
cycle. 

Since most Monte Carlo programmers represent neutron transport quantities 
using stacks, queues and arrays, the mathematical analysis incorporated in this book 
is expressed in terms of finite discrete phase space using vectors and matrices. The 
neutron phase space is discretized into cells, which is termed as phase space cells. To 
this point, any neutron that exits the problem phase space is considered escaped. Plus, 
any functions of 𝐫, 𝛀 and 𝐸 become vectors and any operators become square 
matrices. Most importantly, the order of all matrices and vectors is equal to the number 
of phase-space cells.  

To begin with, it is convenient to define Φ(𝑗) as the expected number of neutrons 
in the corresponding phase-space cells during MC cycle 𝑗. Next, the eigen-equation 
in Eq. (3.63) can be further simplified into, 

Φ(𝑗) =
1

𝑘(𝑗−1)
(𝐓 − 𝐒)−1𝐅Φ(𝑗−1) 

=
1

𝑘(𝑗−1)
𝐑Φ(𝑗−1) 

(4.25)  

with 𝐓, 𝐒, 𝐅 and 𝐑 are square matrix operators with 𝐑 ≡ (𝐓 − 𝐒)−1𝐅, 𝑘(𝑗−1) is the 
current estimate of the effective multiplication factor, and 𝑗 is the iteration cycle index 
such that 𝑗 ≥ 1. 

In this sense, the neutron source distribution of the current MC cycle, Φ(𝑗), can 
be determined by evaluating the matrix operation of the right-hand side of Eq. (4.25). 
Here, Φ(𝑗−1) is the neutron source distribution obtained from the previous MC cycle, 
𝑗 − 1. In the Monte Carlo method, the right-hand side of Eq. (4.25) can be ‘solved’ by 
tracking neutrons that are selected from Φ(𝑗−1), starting from their birth location until 
their death after disappearance reactions. In this context, neutron disappearance 
reactions include fission and neutron capture by a nucleus.  

To begin with, suppose 𝑀  neutrons are randomly selected from Φ(𝑗−1) and 
initiated. Also, 𝑀  is known as the neutron batch size. Each neutron is tracked from 
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its starting point until its death due to escape, Russian roulette and so on. In addition, 
the total number of neutrons initiated during each MC cycle is always normalized to 
𝑀 . When simulating each of these neutrons, the collision site is determined, and the 
neutron is transported to the collision site. During each collision, 𝑚 duplicates of the 
collision site are stored in Φ(𝑗) as the probable fission site and 𝑚 is given by (X-5 
Monte Carlo Team, 2005),  

𝑚 =
𝑤

𝑘(𝑗−1)

𝜈Σf

Σt

+ 𝜁 (4.26) 

where 𝑤 is the particle weight of the neutron and 𝜁  is a random number in [0, 1). 
Equally important, the value of 𝑘(𝑗) can be estimated using the collision estimator 
where the 𝑘(𝑗) estimator is accumulated during each collision 𝑖 (X-5 Monte Carlo 
Team, 2005),  

𝑘
col
(𝑗)

=
1

𝑀
𝑤𝑖𝜈

Σf

Σt

.
𝑖

 (4.27)  

There are also other types of 𝑘(𝑗) estimators, e.g. the absorption estimator and track-
length estimator. However, the discussion of these estimators is beyond the scope of 
this paper. Finally, Φ(𝑗) is assigned as the fission neutron source for the next MC cycle.  

The power iteration method is always prescribed with the initial guess of the 
neutron source distribution, Φ(0). Briefly, as the iteration progresses from one MC 
cycle to another, Φ(𝑗) will stochastically converge to an equilibrium state which is also 
known as the stationary state. When stationarity is implied, tallies such as neutron 
flux, neutron lifetime and the effective multiplication factor can be accumulated, and 
their averages can be calculated at the end of the iterations. 

It is important to ensure that the value of 𝑘eff  and the fission site distribution, 
Φ(𝑗), converge before any tally accumulation is made. In fact, Φ(𝑗) converges slower 
than that of 𝑘eff  (Cho & Chang, 2009). For 𝑘eff  the convergence can be observed from 
the plot of 𝑘eff  versus the number of fission cycles. The procedure outlined by 
(Romano & Forget, 2013) is applied to check whether Φ(𝑗) has converged, where the 
fraction of fission source sites that are present in each unit cell is calculated, 

 𝑆𝑖 =
𝑛𝑖

𝑛
 (4.28)  

where 𝑛𝑖 is the number of fission source sites in the 𝑖th unit cell and 𝑛 is the total 
number of fission source sites within the reactor core. Next, the Shannon entropy of 
Φ is calculated, 

 𝐻src{Φ} = − 𝑆𝑖  log2 𝑆𝑖

𝑛

𝑖=1

 (4.29) 

It is worthwhile to note that the convergence of 𝐻src implies the convergence of Φ. 
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4.9 Code Design and Application 

Principally, TRIMON is meant to simulate neutron transport problems in a TRIGA 
reactor core. Therefore, the material compositions of the reactor core are predefined 
in the code. And also, users do not need to identify the material compositions in the 
code input. The newly developed code recognizes core material compositions 
according to the core configuration, where each core channels are designated to 
various types of elements. A core channel may perhaps comprise of a fuel element or 
any various types of non-fuel element. The list of elements recognized by TRIMON 
is given in Table 4.1. 

Principally, the TRIMON code comprises of two built-in modules. These 
modules are identified as WIMS Integrated TRIGA Cell Homogenization (WITCH) 
module and the Homogenized Group Monte Carlo (HGMC) module. WITCH module 
is intended to generate a homogenized neutron cross section lookup table (via a .txs 
file). Whereas the HGMC module is intended to perform the Monte Carlo simulation 
using the generated lookup table. It also produces the essential simulation outputs such 
as the power distribution, flux distribution and fuel burnups. 

In relation with local fuel burnup consideration, the current accumulated burnup 
of fuel cells is acquired from the local burnup lookup table (the zburn.out file). Here, 
the lookup table is interpreted by WITCH module throughout the course of preparing 
the homogenized neutron cross section. Notice also that the local burnup table is 
updated after each burnup calculation. 

Table 4.1: List of core channel elements. 

Channel Element Description 

FE08, FE12, FE20 19.9% enriched UZrH1.6 fuel element with 8.5%wt, 
12%wt and 20%wt of uranium respectively; stainless 
steel (SS304) cladding. The fuel element is surrounded 
by coolant water. 

CHN1 Irradiation Channel Type-I: An empty Al tube. CHN1 
be used as an approximate model of a transient control 
rod. 

CHN2 Irradiation Channel Type-II: Half void, half water in Al 
tube. 

CHN3 Irradiation Channel Type-III: Full water in Al tube. Can 
be used to represent the central thimble of the reactor 
core. 

GRAP Graphite Element: Graphite in Al tube. 
COOL Coolant water (without Al tube) 

 

The general workflow of TRIMON code is depicted in Fig. 4.6. TRIMON call 
for two input files to work. The case to be solved is given by the user through a 
formatted text file, main.inp, which contains various input cards. The second input 
file, fuel_inventory.inp, contains fuel elements information used in the calculation. 
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TRIMON code is set as a package which comprises of two different Windows™ 
program (.exe) files, where both programs execute WITCH and HGMC modules 
independently. These program files were created after the compilation of the source 
codes using the GNU Fortran compiler. The execution of these programs is not error-
free since runtime errors may arise due to incorrect usage of input cards. Opportunely, 
the code is intended to alert users on particular error encounters through a 
comprehensible error message. 

 

 

 

 

Figure 4.6: TRIMON code workflow. 

4.10 TRIMON Validation and Benchmark Analysis 

Unavoidably, it is compulsory for a newly developed neutron transport code to get 
validated in order to ensure its consistency in producing decent simulation results. At 
this point, TRIMON validation and tests were done in two ways. This includes 
comparing the code numerical output results with the actual operational reactor core 
data recorded in the reactor logbook and also by comparing the code simulation output 
results with the simulation output results produced by any well-established reactor 
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design code such as MCNP. It is important to stress that TRIMON implements a 
method which is yet established by any other Monte Carlists, thus, thorough 
simulation validation and tests must be done before releasing it to the users. 

4.10.1 RTP Approach to Criticality Benchmark 

In this core benchmark problem, the number of fuel elements inserted into Malaysian 
Puspati TRIGA Reactor (RTP) core was incremented and the corresponding value of 
𝑘  was measured. The measurement was made for each subsequent number of fuel 
rods until the reactor core reaches criticality. The core configuration at the moment of 
criticality is designated as Core-0 configuration. Fig. 4.7 shows the comparisons of 
the results obtained from measurements, MCNP, TRIGLAV and TRIMON. 

In the simulation, the problem conditions were set so that they reproduce the 
conditions of the reactor core during the actual measurements. The temperature of the 
coolant was set at 293K, the reactor core was xenon-free, and the power of the reactor 
is at negligible thermal power (<0.01kW). In this experiment, all of the loaded fuels 
are of 8.5%wt fresh fuels (zero burnup level).  

A total of 30000 neutron histories were simulated per fission cycle. The 
criticality calculation was done for 200 cycles with 30 skipped cycles. The number of 
cycles was chosen to ensure that the relative errors of the averaged tallies obtained 
using MCNP and TRIMON falls below 0.1%. It is important to note that (Brown, 
2011) recommends using more than 10000 neutron histories for all simulations to 
avoid significant bias in 𝑘eff  and any local tallies in MCNP. 

The plot of 𝑘eff  versus the number of fuel elements exhibit significant agreement 
between the simulation results with the experimental results at high fuel element 
count. The plot also exhibits strong agreement between TRIMON, MCNP and 
TRIGLAV. TRIMON predicts that the criticality is achieved after 66 fuel elements 
are inserted in the reactor core where the critical core 𝑘  is 1.00095±0.00015. The 
validity of the simulation result is supported by the experimental plot where criticality 
was finally achieved after adding a similar number of fuel elements where the 
measured value of 𝑘eff  is 1.001.  

The difference between the value of 𝑘eff  obtained from TRIMON and the actual 
experiment at the point of criticality is ~5 pcm. Since the systematic error of TRIMON 
is 0.00015 (~15 pcm), the predicted value of 𝑘eff  is well within the expected 
systematic error interval. 
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Figure 4.7: Approach to criticality curve. 

 

Inevitably, there is a significant departure of the measured values of 𝑘eff  from 
simulated values of 𝑘eff  at lower fuel elements count. Specifically, this departure is 
caused by a smaller number of signals received by the detector as a result of its 
relatively large distance from the active core region. As the number of fuels increased, 
the active core region is becoming bigger and closer to the detector which is located 
outside the reactor. As a result, the measurements’ uncertainty was significantly 
reduced. 

4.10.2 TRIMON 𝒌𝐞𝐟𝐟  Comparison with Measured RTP Operational Core Data 

In the operational core benchmark problem, the mixed core configurations of RTP 
which consists of 8.5%wt and 12%wt UZrH fuel elements were considered. To assess 
the reliability of TRIMON, the results of the criticality calculations the first six 
operational core configurations were compared with the measured operational data 
obtained from the operational logbook of RTP. In these criticality calculations, 30000 
neutron histories were used for each fission cycle and 200 fission cycles with 30 
skipped cycles were performed using TRIMON. For additional information, the 
reactor normally operates six (6) hours per day for four days a week. The details of 
the operation histories of RTP for the first six operational cores are given in Table 4.2. 
The summary of the results of the comparison is given in Table 4.3. 
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Table 4.2: Histories of the first six RTP operational cores. 

Core 
Average 

Power (kW) 
Total Burnup 
Given (MWd) 

Accumulated 
Burnup 
(MWd) 

Operating 
Hours (days) 

Core-1 (C1) 455.015 43.4 43.4 95.3 

Core-2 (C2) 600.580 45.8 89.2 76.4 
Core-3 (C3) 674.223 42.6 131.8 63.1 
Core-4 (C4) 727.700 87.1 218.9 119.7 

Core-5 (C5) 706.565 19.6 238.5 27.8 
Core-6 (C6) 736.874 78.0 316.5 105.8 

 

 

Table 4.3: Summary of criticality calculations using TRIMON for Core-1 to Core-6. 
Measured 𝑘eff  obtained from the RTP operational logbook is also given. Difference 
between calculated and measured, Δ𝑘eff , is also given. 

Core 𝒌𝐞𝐟𝐟  TRIMON 𝒌𝐞𝐟𝐟  Measured 𝚫𝒌𝐞𝐟𝐟  

Core-1 (C1) BOC 1.05190 ± 0.00028 1.05312 ± 0.00038 0.00122 ± 0.00047 

Core-1 (C1) EOC 1.03310 ± 0.00030 1.03095 ± 0.00037 0.00215 ± 0.00048 

Core-2 (C2) BOC 1.05701 ± 0.00043 1.05377 ± 0.00039 0.00324 ± 0.00058 

Core-2 (C2) EOC 1.03702 ± 0.00038 1.04004 ± 0.00038 0.00298 ± 0.00054 

Core-3 (C3) BOC 1.05432 ± 0.00026 1.05323 ± 0.00039 0.00109 ± 0.00047 

Core-3 (C3) EOC 1.04258 ± 0.00039 1.04193 ± 0.00038 0.00065 ± 0.00055 

Core-4 (C4) BOC 1.06005 ± 0.00044 1.05657 ± 0.00039 0.00343 ± 0.00059 

Core-4 (C4) EOC 1.03624 ± 0.00043 1.03883 ± 0.00038 0.00259 ± 0.00057 

Core-5 (C5) BOC 1.05102 ± 0.00049 1.05183 ± 0.00039 0.00081 ± 0.00063 

Core-5 (C5) EOC 1.04499 ± 0.00046 1.04882 ± 0.00039 0.00368 ± 0.00060 

Core-6 (C6) BOC 1.04506 ± 0.00043 1.04867 ± 0.00038 0.00361 ± 0.00057 

Core-6 (C6) EOC 1.03978 ± 0.00048 1.03936 ± 0.00038 0.00042 ± 0.00061 
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Figure 4.8: Core effective multiplication factors, 𝑘eff , at zero core power versus 
accumulated core burnup in MWd from Core-1 to Core-6 (C1–C6). 

The sawtooth-shaped plot depicted in Fig. 4.8 indicates a reduction of 𝑘eff  at the 
end of each operational core cycle (EOC) for both measured and calculated values. 
Then, the value of 𝑘eff  is restored every time the core is reconfigured at the beginning 
of cycle (BOC). During fuel reconfiguration, the existing high-burnup fuels may be 
replaced with new fresh fuels, or the same fuels loaded in the core may be reshuffled 
with the existing low-burnup fuels. 

Each core configuration is assigned to a specific core identification, i.e. Core-N 
for the Nth operational core. When a specific core configuration has reached its end-
of-cycle and reconfigured, the new core configuration is assigned to a new 
identification, i.e. Core-(N+1). It is important to note that the four control rods are 
assumed to be fully withdrawn. Essentially, the fuel follower control rod model is 
approximated to a standard 8.5%wt fuel model and the transient rod model is 
approximated to an empty aluminium tube model.  

Here, the simulations of the operational cores using MCNP is not present in this 
section since incorporating fuel burnup effect in MCNP calculation can be 
cumbersome and time-consuming. However, the MCNP result of the critical core 
(Core-0) and the first two operational cores (Core-1 and Core-2) will be presented in 
the next section. Some work done by (Chiesa et al., 2016; Rabir et al., 2017) proposed 
extra treatment to the MCNP simulation model in order to account the fuel burnup 
effect. On the other hand, TRIMON offers instant core burnup consideration without 
the need for extra work on the simulation model. Fig. 4.9 shows the local fuel burnup 
calculation results produced by TRIMON. 

For all simulated core configurations, the measured multiplication factors were 
compared with the result obtained using TRIMON. Interestingly, the average 
percentage difference of 𝑘eff  is less than 1% Δ𝑘/𝑘, thus, indicating that TRIMON is a 
reliable tool to be used for core management analysis of RTP. For all configurations, 
the temperature of the coolant was set at 298K and the reactor was xenon-free. All 
fuel elements are of 8.5%wt and 20%wt, 19.9% enriched standard UZrH fuel.   
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(a) (b) 

Figure 4.9: (a) Locally accumulated burnup in MWd along the axial length of a 
standard 8.5%wt fuel calculated using TRIMON. The fuel remains loaded in the 
reactor core throughout the six operational core configurations (C1–C6). (b) 
Average accumulated burnup at different core radial positions. 

 

4.10.3 Comparison of TRIMON with MCNP Benchmark of RTP 

In this benchmark problem, the criticality calculations of RTP critical core (Core-0), 
first operational core (Core-1) and burned core (Core-2) were performed using 
TRIMON and MCNP. Various tally results obtained using TRIMON and MCNP were 
compared for each of the three cores. In these criticality calculations, the tally results 
include the effective multiplication factor, fission reaction rate, total reaction rate, 
total flux and thermal flux. In addition, the performance of both TRIMON and MCNP 
in terms of simulation time and fission source convergence were also compared.  

Essentially, these comparisons were made to assess the ability of TRIMON to 
reproduce the simulation results obtained using MCNP. Plus, this section reports the 
evaluation of the gain brought by TRIMON compared to the local information lost 
due to the use of homogenized neutron cross section data. The core location map of 
RTP core is shown in Fig. 4.10. The configuration of Core-0, Core-1 and Core-2 is 
depicted in Fig. 4.11 respectively. 
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Figure 4.10: A 7-ring RTP core location identification map. A transient control rod 
(TROD) is located at C-04. Fuel follower control rods (FFCR) are located at D-01, 
D-10 and C-10. 

 

(a) 

 

(b) 

 
(c) 

 

Figure 4.11: RTP operational core configurations (a) Critical core (Core-0) loaded 
with 66 fresh 8.5%wt UZrH fuels (yellow); (b) First operational core (Core-1) 
loaded with 86 fresh 8.5%wt UZrH fuels (yellow); (c) Second operational core 
(Core-2) loaded with 83 spent 8.5%wt UZrH fuels (yellow) and 5 fresh 12%wt 
UZrH fuels (green). Note: Numeric label indicates the fuel burnup in percent U-
235. 
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Again, the control rods are assumed to be fully withdrawn, and this applies to 
all TRIMON and MCNP simulations of Core-0, Core-1 and Core-2. Here, all fuel 
follower control rods (FFCR) were replaced with standard 8.5%wt UZrH fuels, the 
transient control rod (TROD) was approximated using a void aluminium tube model 
and the central thimble of the reactor was replaced with a full water-filled aluminium 
tube model (CHN3). 

Table 4.4 summarizes the effective multiplication factors, 𝑘eff , and the total 
simulation time of the criticality calculations performed using TRIMON and MCNP 
for the three core configurations. For each criticality calculation, the number of 
neutron histories per cycle was increased to 50000 compared to the calculations done 
in the previous sections. This was done to further reduce tally bias in TRIMON and 
MCNP especially in mixed fuels and burned cores so that comparisons can be made 
at better accuracy. These calculations were performed using 200 fission cycles. The 
evolution of the relative error of 𝑘eff  obtained using TRIMON and MCNP over 170 
active cycles for the three cores is shown in Fig. 4.12. It can be observed that 
TRIMON impose a slightly extra uncertainty due to the use of homogenized cross 
section data. However, these extra uncertainties are much smaller compared to the 
extra simulation time consumed by MCNP. Fig. 4.13 shows the plot of CPU wall 
clock in minutes versus fission cycle. Plots in Fig. 4.13 can be interpreted as the total 
time required to accomplish a certain number of fission cycles. 

The number of skip cycles was set to 30 for both TRIMON and MCNP to ensure 
that the fission source distribution entropy completely converges with minimum 
standard deviation. Hence, active fission cycles begin at cycle 31 where tallies 
accumulation and 𝑘  averaging was started. 

 

Table 4.4: Effective multiplication factors and total CPU time for completing 200 
fission cycles, 50000 neutrons/cycle. 

Core 
𝒌𝐞𝐟𝐟  

(TRIMON) 
𝒌𝐞𝐟𝐟  

(MCNP) 
𝚫𝒌𝐞𝐟𝐟  CPU Time 

(MCNP) 
CPU Time 
(TRIMON) 

Core-0 
1.00388 ± 
0.00046 

1.00411 ± 
0.00040 

0.00023 ± 
0.00061 

45.6 mins 13.7 mins 

Core-1 
1.05154 ± 
0.00046 

1.05971 ± 
0.00034 

0.00817 ± 
0.00057 

40.4 mins 11.9 mins 

Core-2 
1.05752 ± 
0.00042 

1.05653 ± 
0.00039 

0.00099 ± 
0.00057 

273.6 mins 12.54 mins 
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(a) 

 

(b) 

 

(c) 

Figure 4.12: Relative error evolution for (a) Core-0, (b) Core-1 and (c) Core-2. 

 
Figure 4.13: CPU wall clock of the first 100 cycles using TRIMON and MCNP. 
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In this benchmark problem, both TRIMON and MCNP codes were executed 
using the same machine. Both codes were also executed once at a time using Intel 
Core-i7 CPU @2.8GHz speed. It can be deduced that TRIMON has a better 
computational speed. Table 4.5 shows the figure of merit (FOM) of all reactor core 
calculations.  Larger FOM is preferred because it means that less computational time 
is required to achieve a certain level of error, or in other words, the computation is 
more efficient. 

 

Table 4.5: Figure of merit (FOM) of TRIMON and MCNP. 

Core 
Configuration 

FOM = 1 / (CPU Time × Relative 
Error2) 

TRIMON MCNP 

Core-0 411293 98075 
Core-1 517744 154784 

Core-2 600876 39878 
 

Table 4.6: Convergence results for Core-0, Core-1 and Core-2 using TRIMON and 
MCNP. 

 Core-0 Core-1 Core-2 

Converged Cycle (TRIMON) 3 3 4 
Converged Cycle (MCNP) 9 8 8 
Converged Time (TRIMON) 20.0s 19.0s 25.1s 

Converged Time (MCNP) 142.2s 112.2s 516.6s 
Converged 𝑯𝐬𝐫𝐜 (TRIMON) 10.120 ± 0.001 10.480 ± 0.001 10.460 ± 0.001 

Converged 𝑯𝐬𝐫𝐜 (MCNP) 8.640 ± 0.002 8.697 ± 0.001 9.350 ± 0.001 

 

In the MCNP model of Core-0, Core-1 and Core-2, the reaction rates, total flux 
and thermal flux tallies were scored over the entire fuel rod cells plus the surrounding 
coolant water cell. Whereas in TRIMON, the tally volume of these quantities is 
integrated over all homogenized unit cells (as shown in Fig. 4.1) that build the entire 
fuel rod plus the surrounding coolant water. In TRIMON, scoring tallies over a region 
smaller than a unit cell is prohibited since TRIMON utilized spatially homogenized 
neutron cross section data. Thus, the same tally criteria are imposed to non-fuel cells 
such as coolant cell, graphite element cell etc.  

The accumulated tallies obtained using TRIMON and MCNP were then 
normalized to a total of one reaction for reaction rates, a total of one neutron for the 
total flux and a total of one thermal neutron for the thermal flux. The normalization 
of these quantities was done to make the comparison simple and perceivable. The plot 
of the total flux, thermal flux, total reaction rate, and fission rate for Core-0, Core-1 
and Core-2 are shown in Figs. 14.14-14.16 respectively. The relative differences in 
per cent of these quantities are also shown in these figures. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.14: The plots of (a) total flux, (b) thermal flux, (c) total reaction rate and (d) fission 
rates across the entire core locations of Core-0. Note: The fluxes and the reaction rates are 
normalised to one neutron and one reaction respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.15: The plots of (a) total flux, (b) thermal flux, (c) total reaction rate and (d) fission 
rates across the entire core locations of Core-1. Note: The fluxes and the reaction rates are 
normalised to one neutron and one reaction respectively. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 4.16: The plots of (a) total flux, (b) thermal flux, (c) total reaction rate and (d) fission 
rates across the entire core locations of Core-2. Note: The fluxes and the reaction rates are 
normalised to one neutron and one reaction respectively. 
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4.11 Discussions 

Aside from demonstrating the feasibility of using homogenized cross section data in 
the Monte Carlo method, TRIMON also intends to offer robust core calculations to 
the end-users. As a result, TRIMON permits users to operate calculations with the 
consideration of local core burnups.  

Fundamentally, the first step to integrating homogenized group data in the 
Monte Carlo method is simply to reduce the complexity of the stochastic simulation. 
On the other hand, simulating neutron transport processes in an actual reactor using a 
point-wise energy cross section data require a detailed reactor core model which 
requires more computational time. In most instances, a detailed core model is not 
necessary because the reflection of the entire core behaviour is more significant. 

Authors in (Rabir et al., 2016) demonstrated that thousands of MCNP criticality 
calculation cycles were required to converge at a good estimation of 𝑘eff  values. The 
work done by  (Wang et al., 2015) also emphasized on speeding up the convergence 
of source distribution and 𝑘eff  due to the similar slow convergence problem. Notably, 
TRIMON addressed this issue by introducing the homogenized cross section in the 
Monte Carlo method to reduce the spatial variation of neutron cross sections within 
the reactor core. Hence, it indirectly coarsens the spatial variation of the source 
distribution, thus relaxing the complexity of the source converging process. However, 
this attempt sacrifices the tally resolution where the highest resolution is only up to a 
unit cell level.  

Conventional point-wise energy Monte Carlo method requires spatially 
dependent neutron cross section data, where the detail of cross section variations 
across the unit cell volume must be known. However, the case is different for 
homogenized unit cells. Recall that a homogenized unit cell is the spatial average of 
a heterogeneous unit cell, 𝑉 , containing various material regions of different neutron 
cross sections. In this perspective, the volume integrated flux and the net reaction rate 
in 𝑉  are the same in both heterogeneous unit cell and its equivalent homogeneous unit 
cell. As a result, the true 𝑘eff  value of both heterogeneous and homogeneous unit cells 
is preserved. 

In fact, all sequences of collision events that occur within a heterogeneous unit 
cell volume are not statistically identical with the collision events that occur within 
the equivalent homogeneous unit cell volume. Moreover, all collision events within a 
homogeneous unit cell volume are virtual, however, these virtual collisions preserve 
the total neutron energy deposited inside the entire geometry of the unit cell. Plus, the 
integral of the neutron track lengths between these virtual collision events that occur 
within the entire unit cell volume is also preserved. Due to the implication of these 
virtual events, tallies should be strictly scored over the entire volume of the unit cell 
and scoring should not be done in the smaller sub-region of the unit cell. Fortunately, 
the neutron behaviour over the entire cell is of much greater importance, thus the 
implication of the virtual collision events is negligible. 
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1. Introduction 

1.1 Overview 

TRIMON is a software package that runs Monte Carlo simulation of neutron random walk 
movements inside a TRIGA reactor.  

TRIMON helps physicists and students to analyse and visualize neutronic behaviour such 
as the effect of reactor power feedback on the core reactivity and the effect of nuclear fuel 
burnup on core reactivity. TRIMON could also be used to analyse the change in core reactivity 
after modifying the fuel configuration, including the fuel arrangements and the fuel type being 
used. 

 

1.2 Licensing 

The current version of TRIMON is free to use for educational and commercial purpose. 
However, all research works that use TRIMON must cite the following article: 

 Omar, M. R., Karim, J. A., & Yoon, T. L. (2019). The development of a multigroup 
Monte Carlo code for TRIGA reactors. Nuclear Engineering and Design, 342. 
 

2. Installing TRIMON 

At the user level, TRIMON installation is an easy job since all component files including the 
required executables are automatically copied to the application data folder of the current 
user. The installation procedure only requires the user to run the installer package trimon-
installer.msi. Please refer to the current TRIMON website on how to download the installer 
package. 

2.1 TRIMON Installation Using trimon-installer.msi 

The steps required to install TRIMON in your machine is given as follows: 

 Step 1: Run trimon-installer.msi. 
 Step 2: Go through the installation wizard by clicking the [Next] button. 
 Step 3: Specify the location to install TRIMON component files by clicking the 

[Browse…] button. By default, TRIMON component files will be copied and saved in 
the user’s application data folder (the appdata folder). Then, click the [Next]  button. 

 Step 4: Confirm the installation by clicking the [Install] button. If the user wishes to 
cancel the installation, click the [Cancel] button. Otherwise, click the [Back] button if 
the user wishes to modify the install location of TRIMON. 
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 Step 5: Click the [Finish] button to end the installation. By default, the Launch TRIMON 
simulation package checkbox is checked. This means that TRIMON program will be 
executed once the user clicks the [Finish] button. 

2.2 Uninstalling TRIMON 

To uninstall TRIMON, it can be done via the Windows Control Panel. Click the Windows 
Start button → search for Control Panel → under the Programs category, click Uninstall a 
Program. Next, a list of installed programs will appear, and the user is required to search for 
TRIMON Simulation Package in the list. Finally, by clicking TRIMON Simulation Package, 
the user will be directed to the official Windows uninstall wizard. 

2.3 Installation Requirements 

TRIMON Simulation Package works on any Windows operating system with a pre-installed 
.NET Framework 2.0 package. If .NET Framework 2.0 is not installed in the user’s machine, 
the user is required to visit the official Microsoft website to get the references on how to install 
.NET Framework 2.0. In general, .NET Framework 2.0 is readily pre-installed in Windows 7, 
8, 8.1 and 10. Guidelines on installing .NET Framework 2.0 in your Windows machine can 
be found at https://dotnet.microsoft.com/download/dotnet-framework. 

 

3. Using TRIMON Simulation Package 

In general, TRIMON Simulation Package is a collection of programs that run various tasks 
such as  

(a) Preparation of simulation input files using trimon-gui.exe, the main graphical user 
interface. 

(b) Homogenized neutron cross section table (.txs file) preparation using 
LIBREADER.EXE. 

(c) Monte Carlo simulation using HGMC.EXE. 
(d) Fuel Burnup Calculation using HGMC.EXE. 

TRIMON requires two input files to work and these input files contain the information of the 
Monte Carlo simulation problem defined by the user. The first input file is a formatted text 
file designated as main.inp. In main.inp file, various important simulation definitions are 
stored, including the geometrical size of the reactor, the arrangement of fuel channels and 
various non-fuel channels such as the control rod location, coolant, and instrumentation 
facilities. Plus, the simulation settings are also kept in main.inp, for example, the neutron 
energy group structure, reactor power, coolant temperature, fuel power-temperature 
correlation parameters, burnup correlation and criticality calculation parameters (number 
fission cycles, number of inactive cycles and the initial guess of 𝑘eff ). 

The second input file is designated as fuel_inventory.inp. It contains a list of the UZrH 
fuels available that will be used for the current simulation job. Practically,  fuel_inventory.inp 
should contain the list of all fuels that are available in the fuel storage facility of the reactor. 
The user can transfer a fuel pin from the fuel inventory to the reactor core, or vice versa. The 
characteristic information of each fuel pin are stored in every single line of fuel_inventory.inp. 
Each line must contain the following characteristic information – the fuel identification 
number (an integer 0001-9999), the fuel type (FE08, FE12 or FE20), the mass of Uranium in 
grams, the fuel enrichment in percent, fuel burnup in MWd, fuel utilization in per cent, and 
the initial burnup state of the fuel in per cent. However, the users are not encouraged to modify 
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any of these parameters, except the fuel pin’s identification number and its corresponding fuel 
type. 

3.1 Preparation of the Main Input File –  main.inp 

To modify main.inp, on TRIMON Dashboard window, click [Input File (MAIN.INP)] tab. 
A text editor with colourful text will appear and the user can edit the pre-existing content of 
main.inp. To save the edited main.inp file, click the [Save] button on the top toolbar of the 
editor. Once the edited content of main.inp has been saved, the [Save] button appears disabled. 
If the content of main.inp is further modified using the text editor and yet to be saved, the 
[Save] button will be enabled again. 

 

Figure 3.1-1: The main.inp text editor. 

Each simulation information is represented using a formatted array of strings segments. 
Each segment comprises a few lines containing various parameters and the first line of a 
segment will always begin with a keyword. Also, the first character of a keyword must be the 
hashtag symbol, ‘#’, i.e. #POWER, #TCOOL and etc. In the text editor, keywords will appear 
with red characters. For example, if the user wishes to set the reactor coolant temperature to 
300K, the following segment must be added to main.inp: 

#TCOOL 
300.0 

In summary, TRIMON requires thirteen (13) different data segments in order to work and the 
summary of the syntax of each segment is given in Table 3.1-1. Most importantly, main.inp 
will always begin with #TRIMON segment on its first line: 

#TRIMON 
Comments can be added here… 

#KEYWORD1 
… 

#KEYWORD2 
… 



PART II 
TRIMON USER’S MANUAL 

6 
 

TRIMON reads main.inp line by line, which means if there exist two segments with a similar 
keyword, only the first found occurrence is considered. The remaining duplicates of the 
segment are ignored by TRIMON. Therefore, it is important to ensure that no duplicates of 
segments exist in main.inp to avoid ambiguity. 

 
Table 3.1-1: A list of syntaxes for all data segments defined in TRIMON. 

Segments Syntax Description 

KRUN  #KRUN  
[seed] [nhistories] [ncycle] 
[nskip]  
[keffguess]  

To specify k-eff calculation parameters. 
[seed] is an integer number between 
0-999999. [nhistories] is an 
integer number between 3000-6000000 
specifying the number of neutron 
histories to be simulated in a single 
fission cycle. [ncycle] is an integer 
number > 0 specifying the total number 
of fission cycles to be simulated 
throughout the criticality calculation. 
[nskip] is the number if skip cycle 
to allow the simulation converges 
before scoring tallies. Note: [nskip] 
< [ncycle]. is the initial guess 
value of the effective multiplication 
factor. 

   
DIMENSIONS  #DIMENSIONS  

[rA] [rB] [rC] …  
[core-critical-height]  

To specify reactor core ring radius and 
core critical height [cm]. [rA],[rB], 
…, [rC] are the outer radiuses of ring 
A, ring B, …, ring G, respectively. 
[core-critical-height] is the 
core critical height of the simulated 
reactor core. 

   

NRINGS  #NRINGS  
[number-of-core-rings]  

To specify the number of core rings. 
Only two valid values are accepted – 6 
or 7.  

   

NLAYERS  #NLAYERS  
[number-of-core-layers]  

To specify the number of core layers.  

   
PFF  #PFF  

[arA] [arB] …  
[ah1] [ah2] …  

To specify the initial guess of radial 
power form factors for each core ring 
and axial power form factors for each 
core layers. See equation (4.3), Chapter 
4: Theory and Laws Implemented In 
TRIMON. [arA],[arB], …,[arG] 
are the radial power form factors of 
Ring A, Ring B, …, Ring G, 
respectively. [ah1],[ah2], … are the 
axial power form factors of Layer 1, 
Layer 2 , …, respectively. 
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MACROGROUP #MACROGROUP  
[ngroup]  
[g1] [g2] …  

To specify the total number of neutron 
energy macro-groups in the simulation; 
and to specify the last micro-group 
number for each macro-group. In 
TRIMON, there are a total of 32 micro-
groups. [ngroup] is the total number 
of neutron energy groups. [g1] [g2] 

  are the last micro-group numbers. There 
should be [ngroup]+1 last micro-
group number in the list. 
 

TCOOL  #TCOOL  
[temperature]  

To specify the coolant water 
temperature in [K].  

   
POWER  #POWER  

[nominal-power]  
To specify the nominal core power in 
[kW].  

   
TEMPREL  #TEMPREL  

[n08] [Pmin] [Pmax] [a0] 
[a1] … [a_n08]  
[n12] [Pmin] [Pmax] [a0] 
[a1] … [a_n12]  
[n20] [Pmin] [Pmax] [a0] 
[a1] … [a_n20]  

To specify the coefficients of the fuel 
cell temperature relation polynomial 
given by equation (4.3), Chapter 4: 
Theory and Laws Implemented In 
TRIMON. Note that [n08], [n12] 
and [n20] are the degree of the 
polynomial; [Pmin] and [Pmax] 
are the fuel cell power boundaries 
defined by the temperature relation; and 
[a0], [a1]… are the corresponding 
coefficients.  

   
BURNUP  #BURNUP  

[dt]  
ST8 [nj] [beta1] [beta2] …  
ST12 [nj] [beta1] [beta2] …  
ST20 [nj] [beta1] [beta2] …  

To specify the burnup increment [dt] 
in [days]; to specify the degree of power 
series, [nj], and the beta coefficients, 
[beta1], [beta2] …, in equation 
(4.2), Chapter 4: Theory and Laws 
Implemented In TRIMON. for each 
different types of fuel elements.  

 

3.2 Preparation of the Fuel Inventory Input file – fuel_inventory.inp 

Fortunately, the preparation of fuel_inventory.inp requires no pre-defined syntaxes and its 
content can be modified using the given graphical user interface. To modify 
fuel_inventory.inp: activate the Core Configuration window by either clicking the title bar of 
the window or by simply selecting [Window] → [Core Configuration] on the main menu 
strip. Once the Core Configuration window is focused, several new options will appear on 
the main menu strip, i.e. [Loading], [Fuel ], [Simulation] and [Configuration Display]. Next, 
choose [Fuel] → [Fuel Inventory Input] on the main menu strip. Lastly, the Fuel Inventory 
Input window will appear. The user can modify the fuel properties of each fuel pin in the 
current inventory by the use of the Fuel Inventory Input window. The summary of the 
available controls in the Fuel Inventory Input window is illustrated in Fig. 3.2-1. 

 The role of the [►] button (1) is to maximize the Fuel Inventory Input window so that the 
user gains a wider view of the window. 

 The Fuel Count panel (2)  displays the number of fuel pina stored in the current fuel 
inventory of each/all fuel type(s) including the FE08, FE12 and FE20. 
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 The Inventory Management Panel (3) contains a set of controls which enable the user to 
search fuel pin(s), remove fuel pin(s), setting a fuel pin as a fresh fuel, reloading fuel 
pins rack and save the current fuel pins inventory.  

 

 

Figure 3.2-1: The fuel_inventory.inp editor. (1) Window Resize button; (2) Fuel Count panel; 
(3) Inventory Management panel; and fuel pins rack (4). 

 

3.2.1 Adding a New Fuel to the Fuel Inventory 

To add a new fuel, scroll to the end of the rack (4) and double click the empty cell at the end 
of the Fuel Tag column to activate the edit mode of the cell. In the Fuel Tag cell, key in the 
identification number of the new fuel pin (an integer ranging from 0001 to 9999). Next, on 
the same row of the fuel rack, select the appropriate fuel type listed in the dropdown control 
embedded in the Fuel Type cell. Once the fuel type is selected i.e. FE08/FE12/FE20, the 
remaining columns on the same row will automatically be filled with the pre-defined values 
corresponding to the selected fuel type. If the new fuel pin is a fresh fuel (zero burnup level 
with 0% utilization), these remaining columns should be left with the pre-defined values. In 
certain cases, the user may want to modify these fields accordingly. For example, if the burnup 
level of the fuel pin is 5%, the user is required to modify the corresponding Burnup [%] cell 
field to 5.0. 

3.2.2 Removing Existing Fuels from the Fuel Inventory 

To remove one or more of the existing fuel pins in the fuel inventory rack, CTRL-click one 
or more rows containing the fuels to be removed → click the [Remove Fuel] button. Most 
importantly, the entire fuel row(s) must be selected to enable the [Remove Fuel] button. If 
there is no fuel row selected, the [Remove Fuel] button is disabled by default. 
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3.2.3 Setting an Existing Fuel as a Fresh Fuel 

To set one or more fuel pin(s) as fresh fuel, CTRL-Click one or more rows containing the 
desired fuel pin(s) → click the [Set As Fresh Fuel] button. Most importantly, the entire fuel 
row(s) must be selected to enable the [Set As Fresh Fuel] button. If there is no fuel row 
selected, the [Set As Fresh Fuel]  button is disabled by default. 

3.2.4 Reloading the Fuel Inventory Table 

For some instances, the user may want to reload the fuel rack (4) so that the fuel rack only 
displays the current fuel inventory list. To reload the fuel rack, click the [Reload Fuel Rack] 
button. Caution: Any unsaved new fuel pins or unsaved fuel pin edits will be discarded after 
reloading the fuel rack. 

3.2.5 Saving Changes Made to the Fuel Inventory 

To save the newly added fuel pin(s) or the edited fuel pin(s), click the [Save] button. 

3.2.6 Search Fuels and Replacing Fuel Information 

To search for one or more fuel rows containing the information of a fuel pin with a specific 
identification number, type the fuel identification number in the Search Fuel ID textbox → 
click the [Go] button. The system will automatically highlight the entire row with the specified 
fuel pin identification number.  

To search for the fuel row(s) by property type and replace the current property value with 
a new value: select the desired property type listed in the Column dropdown list → type the 
desired property value to be searched → type the new property value in the Replace textbox 
→ click the [Go]. Caution: this will replace the property value of all found rows. 

3.3 Preparation of the Core Configuration 

Principally, TRIMON is meant to be used to simulate neutron transport problems in a TRIGA 
reactor core. Therefore the material compositions of the reactor core are predefined in the 
code. Plus, the user does not require to identify the material compositions in the code input. 
Most importantly, TRIMON recognizes core material compositions according to the core 
configuration, where each core channels are designated to accommodate various types of 
elements. A core channel may comprise of a fuel element or any various types of non-fuel 
element. The list of elements recognized by TRIMON is given in Table 3.3-1. 

Technically, the core configuration of the problem can be set by modifying the 
#CORECONFIG segment of the main.inp. However, such a job may cost an extra bit of time 
and effort, which in fact making the process of setting up the problem definition troublesome. 
To ease the process of assigning an appropriate core channel (i.e. 
FE08/FE12/FE20/GRAP/COOL) to each core sites (i.e. A-01, B-01, B-02 …), the user is 
encouraged to modify the core configuration via the Core Configuration window, see Fig 3.3-
1.  
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Table 3.3-1: List of channel elements supported by TRIMON. 

Channel Element Description 

FE08, FE12, FE20 
Enriched UZrH1.6 fuel element with 8.5%wt, 12%wt and 
20%wt of uranium respectively; stainless steel (SS304) 
cladding. The fuel element is surrounded by coolant water. 

CHN1 Irradiation Channel Type-I: An empty Al tube. CHN1 can be 
used as an approximate model of a transient control rod. 

CHN2 Irradiation Channel Type-II: Half void, half water in Al tube. 

CHN3 Irradiation Channel Type-III: Full water in Al tube. Can be 
used to represent the central thimble of the reactor core. 

GRAP Graphite in Al tube. 
COOL Coolant water. 

 

 

 

 

 

Fig. 3.3-1: The Core Configuration window. (1) ring-index display (2) element type display 
(3) non-fuel element selector (4) reactor core channel display (5) fuel inventory rack (6) fuel 
element selector (7) core total burnup display (8) in-core fuel count display (9) configuration 
management buttons. 
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The ring-index display shows the channel site identification (i.e. A-01, B-01 … G-36) of the 
currently selected channel. A selected channel in the reactor core channel display (4) is 
indicated with a red border around it. If a channel in (4) is selected, the ring-index display (1) 
and the element type display will show the corresponding site identification and the 
corresponding element type, respectively. 

3.3.1 Inserting a non-fuel element into a core channel 

To help the user, it is advised to toggle the labelling of the reactor core channel display to 
Channel ID display mode. In Channel ID display mode, the channel site identification of each 
core channel is displayed. This task is optional. An experienced user may not need such a task 
since the user is already familiar with the channel site identification position on the reactor 
core channel display. To enable the Channel ID display mode, select [Configuration Display] 
→ [Display Text] → [Channel ID] on the main menu strip. Tips: TRIMON also provides 
several configuration display options to the user. For example, if the user wishes to display 
the fuel burnup value on all fuel channels, select [Configuration Display] → [Display Text] 
→ [Burnup]. In the Burnup display mode, each fuel channel is labelled with its corresponding 
fuel burnup level in per cent. 

For instance, our objective is to insert a graphite element into the core channel site G-36. 
Inserting a non-fuel element into a core channel can be done in two ways. The first is by 
simply clicking the G-36 core channel → right-click → select [Insert GRAP] on the context 
menu strip. The second is by toggling the Insert GRAP mode by clicking the GRAP element 
on the fuel element selector (3) → click the G-36 core channel → disable the Insert GRAP 
mode by re-clicking the GRAP element on the fuel element selector. The advantage of the 
second method is that it enables multiple non-fuel element insertions.  

3.3.2 Inserting a fuel element into a core channel 

Suppose that the user wishes to insert an 8.5%wt UZrH fuel pin with fuel pin identification 
number 9015 into the core channel site B-02. Here, assume that fuel pin 9015 has already 
been stored in the fuel inventory record. To add a new fuel pin into the fuel inventory record, 
please refer Section 3.2.1. Using the fuel selector (6) on the core configuration window, click 
the [9] button → click the [0] button → click the [1] button → click the [5] button → and 
click the [OK] button. The system will automatically highlight fuel 9015 in the fuel inventory 
rack (5). To delete a mistakenly pressed digit, click the [Del] button. Alternatively, with the 
Core Configuration window in focus, press the keyboard buttons: 9, 0, 1 and 5 instead of 
pressing the numeric buttons on the fuel selector (6). Note: If the specified fuel identification 
number could not be found in the fuel inventory rack, the fuel selector (6) panel will display 
ERR. The selected fuel can be inserted into the core provided that the selected fuel appears to 
available in the fuel inventory rack (5). The third column of the selected table row will indicate 
whether the fuel is IN-USE or AVAILABLE. 

Next, select the core channel site B-02 on the reactor core channel display until ‘B-06’ 
appear on the ring-index display (1) →  right-click the highlighted fuel inventory rack table 
row →  click [Insert Fuel 9015 into channel B-02]. 

3.3.3 Removing a fuel pin 

A fuel pin can be removed from a reactor channel (4) by selecting the fuel pin’s channel site 
→ replace the channel site with a coolant element (COOL) using the method outlined in 
Section 3.3.1.  
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3.3.4 On-the-fly modifications of fuel properties 

Traditionally, the user can modify fuel pin properties by selecting [Fuel] → [Fuel Inventory 
Input] from the main menu strip. Alternatively, it is possible to do such modifications by 
using the fuel selector → select the desired fuel using the fuel selector (6) → click the 
[MODIFY] button on the fuel selector (6). A Fuel Inventory Input window will appear with 
the specified fuel pin information being pre-highlighted on the fuel inventory rack. The user 
may proceed for the modification by using the steps outlined in Section 3.2.6. 

3.3.5 Displaying the total core burnup 

The total core burnup of the current state is displayed on the total core burnup display (7). 
This value is equals to the sum of all numbers listed on the fifth column of the fuel inventory 
table (5). The total core burnup unit can be modified into MWd/MWh/kWh by using unit 
toggle button on the total core burnup display (7). 

3.3.6 In-Core Fuel Count 

The in-core fuel count display (8) gives the information on the number of fuels that are being 
loaded into the reactor core according to the following categories: 

(a) FE08 Count – The number of 8.5%wt UZrH fuels loaded in the reactor core 
(b) FE12 Count – The number of 12%wt UZrH fuels loaded in the reactor core 
(c) FE20 Count – The number of 20%wt UZrH fuels loaded in the reactor core 
(d) Total – The total number of UZrH fuels loaded in the reactor core 

This is an important feature that helps the user to ensure the correct number of mixed fuels 
are loaded into the reactor core.  

3.3.7 Saving fuel configuration 

If the user has finished setting up the fuel configuration, it is important to save the 
configuration in the main.inp file. To do this, click the [Save Config] button (9). Caution: If 
the core configuration is not saved, the future simulation will not consider any newly modified 
core configuration. Plus, the unsaved core configuration might not be able to get recovered in 
the future, unless the user has clicked the [Save Config] button. 

3.3.8 Resetting/Reloading core configuration 

If the user wants to reset the reactor core, that is, to remove all available fuel pins and non-
fuel elements from the reactor core: press the [Reset Config] button (9). This will replace all 
core channel sites with COOL elements. 

For some instance, the user needs to cancel his/her unsaved core configuration modifications 
due to some reasons. In order to reload the reactor core with the previously saved core 
configuration, click the [Reload Config] button (9).  

3.4 Running the Monte Carlo Simulation 

3.4.1 Setting up the Monte Carlo simulation parameters 

In this section, it is important that the user must have a good knowledge of Monte Carlo 
criticality calculation. To learn more about Monte Carlo criticality calculation, please refer 
Chapter 4: Theory and Laws Implemented in TRIMON from the theoretical reference of 
TRIMON. To run the Monte Carlo simulation of the problem defined by the user in the 
main.inp and fuel_inventory.inp files, the following MC parameters must be understood 
carefully: 
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(a) Random Number Seed – A seed is a positive integer ranging from 0-9999999. The 
user can choose any number within this range. To ensure reproducibility of the 
simulation, the user is encouraged to use the same random number seed for all related 
computational problems. This seed value will be used by the random number 
generator module of HGMC.EXE to generate random number sequences during the 
Monte Carlo simulation 

(b) Total Neutron Histories – This is the total number of neutrons to be simulated in a 
single fission cycle. The user must prescribe an integer number ranging from 3000-
6000000. 

(c) Total Number of Fission Cycle – This is the total number of fission cycle to be 
repeated during the course of criticality calculation. The user must prescribe an 
integer number ranging from 1-99999. 

(d) Total number of Skip Cycles – This is the total number of idle fission cycles, such 
that the simulation tallies are not accumulated during these skip cycles. The user must 
prescribe an integer value greater than 0 and less than the total number of fission cycle 
(c). 

(e) Initial Guess of keff – In most criticality calculations, it is compulsory to prescribe the 
initial guess of keff during the starting point of the calculation. The user is advised to 
prescribe a value which is close to the final calculated keff. This number is usually 
between 0.0 to 2.0. The closer the initial guess of keff to the final calculated keff, the 
faster the convergence of the calculation. 

These MC calculation parameters can be set up by modifying the  #KRUN segment of the 
main.inp file. To do so, please follow the steps outlined in Section 3.1. For instance, the 
following #KRUN segment  

#KRUN 
920909 100000 2000  
0.8 
 

indicates that the random number seed is 920909, the total number of neutron histories is 
100000, the total number of fission cycles is 2000, the total number of skip cycles is 500 and 
the initial guess of keff is 0.8. 

3.4.2 Eigenvalue Calculation Tab 

The Eigenvalue Calculation tab consists of all relevant controls that assist the user on 
executing Monte Carlo criticality calculations. Eigenvalue tab can be found on the TRIMON 
Dashboard window. 
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Fig. 3.4-1: Basic Criticality Calculation (Eigenvalue Calculation) controls in TRIMON 
Dashboard window. (1) Fission source entropy (H-SRC) and standard error (STD ERROR) 
monitoring display, (2) Eigenvalue display (3) core excess reactivity display (4) Monte Carlo 
simulation execution control, and (5) Monte Carlo simulation job termination.  

To begin the execution of Monte Carlo criticality calculation, on the Eigenvalue Calculation 
(Monte Carlo) panel (4), click the [Run] button. This will invoke the LIBREADER.EXE 
program to generate the homogenized neutron cross section data table (.txs file) and then the 
neutron cross section table will be used by HGMC.EXE to execute the Monte Carlo criticality 
calculation. If the user wishes to use the pre-existing neutron cross section data table: Select 
the desired .txs file from the TXS Tape drop down list → click the [Run Using Selected TXS] 
button. In this mode, the LIBREADER.EXE program is not invoked by the system since no 
new neutron cross section table will be generated because a pre-existing .txs is being used. 
However, the TXS Tape dropdown control only lists the .txs files that are located within the 
same directory of HGMC.EXE. If the user wishes to run the critical height search mode, 
CTRL-click the [Run] button. In the critical height search mode, TRIMON will search for the 
core height that yields criticality when the current core configuration set by the user is used. 
This step is important during the first-time calculation setup for a specific reactor. A different 
reactor has a different critical height therefore TRIMON needs to make buckling adjustment 
via the adjustment of the core height. To run the critical height search mode using an existing 
.txs tape, CTRL-click the [Run Using Selected TXS] button. 

During the progress of the criticality calculation, the effective multiplication factor 
calculated during the previous fission cycle is displayed at the Eigenvalue display (2). 
Therefore, the user will notice that the displayed value keeps on changing from one fission 
cycle to another. Also, the corresponding core excess reactivity is also kept updated from one 
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fission cycle to another in the Reactivity display (3). The user can also evaluate the fission 
source convergence trend and the current k-eff standard error by monitoring the live plot of 
the fission source entropy (H-SRC) and standard error (STD ERROR) (1).  

3.4.3 Terminating the current running simulation 

The user can also force to terminate the Monte Carlo criticality calculation by clicking the 
[Terminate] button (5). However, the user is encouraged to complete the calculation since 
terminating a Monte Carlo simulation prematurely leads to an incomplete display of 
simulation results. Therefore, it is best for the user to thoroughly finalize the problem 
definition via main.inp and fuel_inventory.inp before attempting to run the simulation.  

3.4.4 Burnup Calculation 

Burnup calculation will be performed after TRIMON has completed the Monte Carlo 
criticality calculation. At the end of the criticality calculation, the fuel power tally result is 
compiled and stored in PDIST.OUT file. The burnup module will then update the current 
burnup values for each of the fuels by using the fuel power distribution data stored in 
PDIST.OUT. The burnup calculation may also require the operational time interval of the 
current core in days, and this must be prescribed by the user via the #BURNUP segment of the 
main.inp file. For instance, the following #BURNUP segment indicates that the operational time 
interval of the current core is 100.0 days. 

#BURNUP 
100.0 
FE08 3 3.33 -0.0102  -0.0000525 
FE12 3 2.30 -0.00570 -0.00000748 
FE20 3 1.31 -0.00263  0.00000520  

 

At the end of the burnup calculation, fuel_inventory.out output file is generated. The content 
of fuel_inventory.out is similar to fuel_inventory.inp, however, the former contains the 
updated burnup level of each fuels. If the user wish to re-do the burnup calculation using a 
different operational time interval, the user is required to update the operational time interval 
defined in the #BURNUP segment → return to Eigenvalue Calculation tab → click the 
[Update] button under the Burnup Calculation panel (6). 

 

3.5 Simulation Output 

The simulation output is a set of information measured during the course of the Monte Carlo 
simulation. In TRIMON, a set of neutronic quantities were tallied and accumulated during the 
criticality calculation. These neutronic quantities include: 

(a) Neutron Flux Distribution 
(b) Full Core Power Distribution 
(c) Reaction Rates 

Once the criticality calculation ended, the corresponding simulation output files will be 
generated by the system and these output files are ready to get evaluated by TRIMON. 
Suppose that the user has executed the criticality calculation and the simulation has ended 
without any issue. To view the simulation results, focus on TRIMON Dashboard window → 
click the [Output] button → Simulation Output window will appear in the interface.  
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Fig. 3.5-1: Basic simulation output controls in Core Output Flux and Power window. (1) 
Plotting plane adjustor (2) core depth adjustor (3) neutron energy group selector (4) channel 
selector  (5) plotting tab control (6) radial flux value display (7) axial flux value display (8) 
fuel power display.  

 

3.5.1 Viewing the Axial Flux Distribution 

TRIMON has the capability of computing the axial flux distribution of a TRIGA reactor core. 
This means that the flux profile along the height of the reactor can be analysed by the user for 
better analysis of the neutronic behaviour inside the reactor. To view the axial flux distribution 
plot, select the Axial Flux Distribution [Rel. Unit] tab (5). 

By default, the plot plane is the xz-plane at y = 0. The user can translate the xz-plane 
position along the y-axis by sliding the y-pos [cm] trackbar on the plotting plane adjustor 
panel (1). The plot will be automatically updated according to the y value given by the 
trackbar. Also, sliding the y-pos [cm] trackbar will reset the x-pos [cm] trackbar value to x = 
0 and vice versa. Similarly, if the user wishes to set the plot plane to the yz-plane at x = 3.0, 
the user needs to adjust the x-pos [cm] trackbar until the label on the status bar shows x = 3.0.  

Note also that when the mouse hovers on the plot view (5), the Axial Core Flux display 
will show the flux value at the mouse position. Here, the display will show the location 
identification tag in the form of {Channel ID}-{Layer} where {Channel ID} is the channel 
identification (i.e. A-01, B-01, …, G-36), {Layer} is a two-digit number representing the core 
layer identification number.  

3.5.2 Viewing the Radial Flux Distribution 

TRIMON also has the capability of computing the radial flux distribution of a TRIGA reactor 
core. This means that the flux profile along the radius of the reactor can be analysed by the 
user. To view the radial flux distribution plot, select the Radial Flux Distribution [Rel. Unit] 
tab on the plotting tab control (5). 
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By default, the plot plane is the xy-plane at z = 0. The user can also translate the xy-plane 
position along the z-axis by sliding trackbar on the Core Depth  adjustor panel (2). The plot 
will be automatically updated according to the z value given by the trackbar. The current value 
of z in cm is displayed on the status strip. 

Note also that when the mouse pointer hovers on the plot view (5), the Radial Core Flux 
display will show the flux value at the mouse position. The display will also show the location 
identification tag in the form of {Channel ID}-{Layer} where {Channel ID} is the channel 
identification (i.e. A-01, B-01, …, G-36), {Layer} is a two-digit number representing the core 
layer identification number. 

3.5.3 Viewing the Channel Axial Flux Distribution 

TRIMON also features the capability of visualizing the flux variation along a single channel. 
For instance, this feature allows the user to analyse the flux distribution along the fuel length 
of a fuel pin loaded into, say, the channel B-06. To view the channel axial flux distribution 
plot, select the Channel Axial Flux Distribution [Rel. Unit] tab on the plotting tab control (5). 
The user can view the axial flux of various channels by simply selecting the channel site 
identification listed in Channel Selector drop down list (4). 

3.5.4 Viewing the Power Distribution 

It is also possible to analyse the fuel power of fuels that were loaded into the TRIGA reactor 
core using TRIMON. This means that the fuel power distribution profile along the radius of 
the reactor can be analysed by the user for better analysis of the fuel economy. To view the 
power distribution plot, select Power Distribution [Rel. Unit] tab on the plot view tab control 
(5). 

By default, the plot plane is the xy-plane. Note also that when the mouse hovers on the 
plot view (5), the Power display will flash the power per fuel element (per fe) value at the 
mouse curser position. The display will also show the location identification tag in the form 
of {Channel ID}-{Layer} where {Channel ID} is the channel identification (i.e. A-01, B-01, 
…, G-36), {Layer} is a two-digit number representing the core layer identification number. 
By default, the fuel power is expressed in the unit of Watt per fuel element (W/fe). 

3.5.5 Viewing the Reaction Rate 

The reaction rate of each core channel is displayed on the Reaction Rate tab on the plot view 
tab control (5). Here, a column bar chart is utilized where each column represents a single 
core channel. In the reaction rate plot, the reaction rate of all core channels are included, 
therefore, if the user wishes to view the reaction rate value of a specific core channel, say, A-
01, the user may have to mouse left-click  through all column bars until the tooltip display 
“A-01 …”. The reaction rate is normalised to one reaction. By default, TRIMON will plot the 
total reaction rate. To select a different type of reaction, click the Reaction Types drop down 
list an select the desired reaction type. The user can also scale the y-axis of the plot by typing 
the maximum value of the axis in Set Max textbox. To refresh the plot, click the [Refresh] 
button. 
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3.6 Managing Simulation Inputs and Outputs 

 

Fig. 3.6-1: The Simulation Data tab. 

 

3.6.1 Saving and Loading Simulations 

For some reasons, the user is encouraged to save all simulation inputs (i.e. main.inp and 
fuel_inventory.inp) and outputs (all files with the .out extension) for future reference or future 
re-calculation. Therefore, TRIMON allows the user to do so by compiling all files into a 
compressed ZIP file. To save all simulation files, select Simulation Data tab on TRIMON 
Dashboard window (see Fig. 3.6-1) → click the [Export Simulation Files] button → a save 
file dialog will appear → provide a name for the .zip file → click the [Save] button. 

To import a saved simulation ZIP file and load all saved information into TRIMON, click 
the [Deploy Simulation Files] button → an open file dialog will appear → locate the desired 
.zip file → click the [Open] button. 

3.6.2 Fuel Inventory Transfers 

It is also customary to save the fuel_inventory.out file for future reference. For example, the 
user may want to simulate a new reactor core configuration using the previously utilized fuels 
listed in fuel_inventory.out. Note: fuel_inventory.out contains a list of fuels utilized during 
the previous core calculation, where each fuel burnup level is updated according to the 
operational time interval of the previous core configuration. Therefore, the user will have to 
save the fuel_inventory.out as an .elm file → define the new core configuration in TRIMON 
→ import the saved .elm file as fuel_inventory.inp. Now, the content of the previously 
generated fuel_inventory.out has become the content of the current fuel_inventory.inp. 

To save the current fuel_inventory.out as an .elm file, select Simulation Data tab on 
TRIMON Dashboard window (see Fig. 3.6-1) → click the [Export fuel inventory output as 
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.elm file] button → a save file dialog will appear → provide a name for the .elm file, say, 
burned_previous_core_fuels.elm → click the [Save] button. 

To load an .elm file as the current fuel_inventory.inp, simply click the [Load .elm file as 
input] button → an open file dialog will appear → locate the desired .elm file → click the 
[Open] button. 

For users’ convenient, TRIMON also allows the user to save the current fuel_inventory.inp 
file for future reference. To do so, click the [Export fuel inventory input as .elm file] button 
→ a save file dialog will appear → provide a name for the .elm file → click the [Save] button. 

3.7 Monitoring Neutron Tracks 

 

Fig. 3.7-1: The Neutron Tracks tab. 

It is also important to avoid anomalies of the neutron tracks occur during the simulation to 
ensure results reliability and accuracy. Anomalies such as pre-mature track termination and 
tracks that extends past the outermost reactor boundary must be avoided. If any of these 
anomalies happens, the user is advised to double-check the simulation inputs. Therefore, 
TRIMON allows the user to view the first 1000 neutron tracks recorded during the simulation. 
Plus, the plot of these tracks is fascinating and enables users to understand the way neutrons 
get transported within a nuclear reactor.  

To monitor the plot of neutron tracks, select Neutron Tracks tab on TRIMON Dashboard 
window (see Fig. 3.7-1). By default the radial and axial plot of the first 50 neutron tracks will 
appear on the plot view. The user can also limit the number of neutron tracks in both radial 
and axial plots. To do so, select the number of neutrons from the Number of Neutrons drop 
down list → click the [Radial]/[Axial] button to plot the radial/axial neutron tracks plot, 
respectively. To reset both radial and axial plots of the neutron tracks, click the [Reset] button. 


