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particle enters the hole, it leaves the container. Calculate the number of par-
ticles in the container as a function of time. Show that this number, which is
proportional to the partial pressure of the cream particles varies as exp(--t/ 7),
where T is the effective time!constant for the escape. Hind: Reéasonable param-
eter choices are a 50 % 50 container lattice and a hole 10 units in length along
one of the edges. .
7.16. Carry out an analysis of the entropy for the noulinear damped pendulum studied
- in Chapter 3. Consider the behavior of 0(t) and divide the possible range for
4 into a number of cells (try 100). Simulate the pendulum and calculate a
histogram of the number of times the pendulum angle falls into a cell as a function
of 6: sample 6(t) in synchrony with the drive force, as we did in calculating the
, Poincaré sections. Calculate the entropy using (7.24) as a function of the driving
&' force. You shoild find tiat S is small in the periodic regin® and large when the
: " pendulum is chaotic. What is S in the period-2 and period-4 regimes? )

o

" 7%~ CLUSTER GROWTH MODELS
i
3

We have spent a good deal of time in this chapter.exploring random walks and their
connection with diffusion and the approach to equilibrium. Amnother interesting
random process, which turns out to be closely-related to random walks, concerns
the growth of clusters, such as snowflakes and soot particles. In this section we will
examine two different models of cluster growth. The first is known as the Iden
model and operates according to the following rules. Consider a two dimensional
lattice of points {x,y), where x and y are both integers. These are the allowed
locations for the particles that ‘will make up the cluster. We begin by placing a
seed .particle at the origin (x = 0,y = 0); this is our initial cluster. A cluster
grows by the addition of particles to its perimeter. Cur initial cluster has nearest-
neighbor points on the lattice at (&1,0) and (0,£1). We wilk refer to such still
" unoccupied sites that are nearest peighbors of occupied sites as the perimeter sites

of the cluster. We next choose one of these perimeter sites at random and place
a particle at the chosen location. The cluster now contains two particles and a
correspondingly larger perimeter. This process is then repeated; a perimeter site
is chosen at random (i.c., all perimeter sites have the same probability of being
chosen), and a particle added at that location. We continue this process until a
cluster of the desired size is obtained. This is the Eden model of cluster growth.

A typical Eden cluster is shown in Figure 7.17. While it is a little rough
around the edges, it is basically a circular disc with a few holes. Note that as
the cluster grows these holes tend to fill-in, since they are treated on the same
footing (they are equally Likely to be occupied by the next particle) as the exterior
perimeter sites. : B

The Eden model is sometimes referred to as a “cancer” model, because the
clusters grow from within by expanding their borders. However, not all clusters
in nature grow in this manner. For example, snowflakes and soot particles grow
by the addition of new particles that originate from outside the cluster.?® This
process is captured by a different cluster model, which is known as diffusion-limited
aggregation, or DLA.

23More precisely, the places where new particles are added depend on processes that take place
outside the cluster.
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FIGURE 7.17: Eden cluster corfaining 2500 particies. Note that there are very few “holes” inside the
main body of the cluster.

The growth rules for DLA clusters are as follows. We again start with a seed
particle at the origin. We then release a particle at a randomly chosen location
(z,y) that is some distance away from the seed and let it perform a random walk.
If (or when) this walker lands on & perimeter site, it sticks there and becomes part
of the cluster.?* This process is repeated with many walkers until a large cluster
is grown. One way to motivate (or justify!) the choice of these growth rules is t0
consider how a large particle might be built up from smaller particles or molecules
in a solution. If the cluster is located well away from any other objects, such
as walls or other clusters, small particles will approach it from all directions. In
addition, it seems reasonable to assume that =inall particles will move diffusively
as they travel through the solution around the cluster. This process is captured
in the DLA growth rules since, as we have already seen, diffusion is equivalent to
a random walk. Of course, we call imagine situations in which these rules would
not be appropriate. For example, there might be some localized source of the small
particles, or perhaps a prevailing current, that would give an overall drift velocity
in addition to the random walk., These are perfectly reasonable models and each
could be interesting depending in part on possible ‘connections to real systemns.

- A cluster grown using the DLA rules is shown in Figure 7.18 {we will con-
sider the programming associated with generating such clusters in the exercises)-
Comparing our DLA cluster with the Fden cluster Figure 7.17, it is obvious that

e

24We may also let the pa.rticl_e stick permanently at a perimeter site with some specified prob-
ability that is less than unity {or only after a certain number of visits to that site). Such 2 model
may better describe a situation where the sticking process represents e-.g., & chemical Teaction,
which occurs probabilisticaily: A problem of this type is explored in the exercises.
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FIGURE 7.18: Left: growing.DLA cluster. The filled squares are sites in the cluster and the dots
are the lattice sites visited by a particular random walker as it approached. This walker evéntualfly
touched the perimeter at.the top.edge of the cluster and became attached there. Right: DLA-cluster
containing 740 particles. ™ 777 v - : N ’

they have very different properties. The Eden cluster is, as we have already neted,
essentially a solid disk with very few holes and a fairly smooth perimeter. In cop-
trast, the DLA cluster contains many large open spaces and the perimeter is very
irregular. These differences are directly connected with the growth rules. For the |
Eden clusters all perimeter sites, even the interior ones, are equally likely to be filled ]
by the next particle. This tends to fill in any holes or cracks, since those were likely
formed long before the outermost parts of the cluster. For DLA it is extremely
unlikely that such crevices will be filled in, as the probability that a random walker
will manage to navigaté past the outermost parts of the cluster on its way deep
into a crack is very low. A walker is much more likely to first make contact with
the outer edges of the cluster.

This intuitive explanation of the difference between Eden and DLA clusters
is useful, but we would like to have a quantitative measure of this difference. This
brings us to consider objects that are known as fractals, which will be our primary
topic for the remainder of this section and the next one as well. Rather than try
to give a very general definition of what it means to be a fractal, we will instead
introduce a few terms and concepts associated with these objects. A definition will
gradually emerge as we proceed.

Let us consider how we might measure the dimensionality of an object. At

* first this may seem like a silly exercise. Your intuition tells you that straight lines
are one-dimensional objects, flat disks are two dimensional, etc. But what about a
piece of spaghetti, or a string that is tangled, or a piece of crumpled paper? While
your intuition probably would still feel comfortable in these cases, it is instructive
to construct an operational definition for dimensionality. There are several ways to
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FIGURE 7.19: Method for calculating the effective dimensionality of a cluster, shown ;‘a‘é;ﬁﬁﬁe, shaded
région. ni{r) is the mass contained within a circle of radius r. )

apptoach this problem. In the next section we will discuss simple curves and other
objects that are close to being one dimensional. Here we will consider the problem
for our Eden and DLA clusters.

Suppose we have a large disk of uniform density that lies in the z-y plane,
as illustrated in Figure 7.19. If we consider the mass of the disk that is contained
within a circle of radius r, it is easy to see that this is given by

mir) = onr®, ‘ (7.25)

where ¢ is the mass per unit area and r is small enough that the test circle is
entirely contained within the disk. The key point is that the mass scales as r2, and
this 2 is also the dimensionality of the object. If we instead had a straight line or
a similar type of curve, the mass would be '

mir) = 2Ar, (7.26)

where A is the mass per unit length and r is again small enough that the circle does
not go beyond the ends of the line. The mass now scales as r}, and 1 is again the
spatial dimensionality of the object.?
These observations form the basis of an operational definition that we can use
to calculate the effective dimensionality of a cluster. Our definition is
mir) ~ r (7.27)

3

258trictly speaking, dbjects must be of infinite size for the dimensionality obtained in this way
to be correct to all scales of r. In that sense, any finite object becomes zero-dimensional at a
sufficiently large scale of r.
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FIGURE 7.20: Left: plot of logm versus logr for the Eden cluster in Figure 7.17. The solid line is a
least-squares fit whose slope is the fractal dimensionality; which for this-cluster was df ~ 1.99; it was

" equal to 2 to within the statistical uncertainties. Right: plot of. logm. versts log r for the DLA cluster

in Figure 7.18. The solid line is again a least-squares fit whose slope is the fractal dimensionality,
which for this cluster was dy == 1.835.

where d is the effective or fractal dimensionality of the object. We have already
seen cases that yield d; = 1 (a simple line or curve), and dy = 2 (a solid disk); a
solid sphere would be described by df = 3. It remains for us to devise objects for
which d; is not an integer.

To apply this definition to one of our clusters, we need to calculate the mass
inside a circle of radius r, which is centered inside the cluster. For convenience we
choose the position of the initial seed particle as the center and call this point the
origin.?® Assuming that all of the particles have the same mass, we can find m(r)
by counting the number of particles within a distance r of the origin. Values for the
mass as a function of r for our Eden and DLA clusters are shown in Figure 7.20,
where we have plotted the results on logarithmic scales. Such plots are useful, since
taking the logarithm of both sides of (7.27) yields

logm ~ dj logr, {7.28)
g0 the slope of a log-log plot is equal to the fractal dimensionality.

For both types of clusters the results for logm versus log r are consistent with
a straight line and thus with the relation (7.28) for small r. However, the curves
flatten out for large 7. This is due to the finite size of the clusters. For very large

26Gtrictly speaking, the definition (7.27) should be applied with many test circles, with centers
chosen at all possible locations within the cluster. The notion and value of an effective dimen-
sionality should not depend on the choice of a specific “center.” However, for simplicity in our
numerical calculations, we will use the seed particle location as the center. The interested {or
skeptical) reader is encouraged to calcnlate the dimensionality using other choices.
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- measuring circles (see Figure 7.19) the entire cluster will be inside the circle, and
in this case m(r) will be independent of . For the same reason, when r is only a
little less than the maximum “radins” of the cluster, ryay, m(r) will be suppressed
'below its value for the ideal case; that is, for an extremely large (infinite) cluster.

" In practice, a particular cluster can ouly be used to estimate m(r) for distances up
to about Fyax/2.

' The solid lines in Flgu.re 7.20 are least-squares fits of (7.28) to the results for
m(r) out t0 T'max/2. The slopes of these lines are the fractal dimensionalities, and
we find d; = 1.99 for the Eden cluster and 1.65 for the DLA cluster. To within the
statistical errors the Eden cluster has a dimensionality of 2. This is in accord with
our intuition; the Eden cluster is essentially just a solid disk. However, the DLA |
cluster has a fractal dlmens?onahty much less than 2 {and also much greater than

1). Indeed, this is why it is known as a fractal. ,

In order for a cluster to have an effective dimensionality df, which is not an
integer, its mass must increase more slowly?” than 72. This means that it must
contain holes or cracks, as we have observed in the DL A clusters. However, simply

" containing such open spaces is not enough. A planar object that has a certain,
constant fraction of open space would still'have dy = 2. In order to have dy < 2,
the sizes of these open spaces miist fncrédse with r. Evidently, DLA clusters have
just this property.

EXERCI SES

-7.17. Write a program to generate DLA clusters and calculate their fractal dimen-
sionality. Mere are a few programming suggestions for this problem. We have’
already seen that random walkers can take a long time to move an appreciable
distance and this can make the generation of a DLA cluster very slow if you are
not careful. Initially, start new walkers a distance rsiare away from the origin,
by choosing the initial position of a walker at random on a circle of radius rseart
{but make sure that they are on the lattice). 28 If the walker wanders too far
from the cluster, say farther than 1.5 X rstart, it may never hit the cluster, so a
new walker should be started. As the cluster grows, rstart should be increased so
that the walkers don't begin teo close to the cluster. Try keeping rstare at least
5 units larger than the maximum cluster size {that is, the point on the cluster
whieh is farthest from the origin). Also, when the walker is far from the chister
you can let it take steps of length 2 (to speed up the walk), then decrease the
step length as it approaches the cluster.

7.18. Grow a DLA cluster using the algorithm described in the previous problem, but
instead of letting the walkers start from points on a circle that surrounds the
cluster, have all of the walkers begin at a location on the = axis. How does this
affect the shape and structure of the chister?

- 7.18. Generate a DLA structure using an initial “seed,” which is the entire r axis.
That is, begin with all of the sites on the z axis occupied and let the walkers
begin some distance above this axis. The resulting structure is sometimes used

27We assume Here that the cluster is grown on a planar lattice and not a three-dimensional one.

28Be sure that you pick the initial location of the walker at random from possible locations on
the circle. This is most easily done by choosing an angle at random in the range 0~27 and using
it to specify the starting point of the walker.
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to model the paths followed by electric discharges in a gas (that is, Hghtening
bolts).

*7.20. Repeat the previous problem but allow your random walkers to move on a three-
dimensional lattice. You should find a value of dfirr 2.5 in this case.

7.21. Generate a DLA cluster as above but let the walker stick to the cluster only with
a probability p < 1, say, p == 0.1,0.3,0.6, etc. Describe any trends that you find
in the fractal structures as p is varied.

7.22. Generate a DLA cluster using walkers that perform a biased random walk. That

: is, let your walkers have a higher probability for walking iri one particular di-
rection (along the +x direction, for example) than in other diréctions, This is
a biased random walk, as we ha,ve considered in an éarlier exercise. Study how
both dy and the overall shape of the cluster depend on the magmtude of th]S‘i} .
drift velocity:

*7.23. An interesting variation on DLA is to begin with a lattice in which some fcax;tion )
of sites are occupied with particles, and then let the cluster diffuse and pick up
particles as it makes contact with them. Use a square lattice and place particles
on sites at random with some probability {p = 0.1 is a good choice). Let the
cluster perform a random walk and whenever a perimeter site is occupied by a
particle, that particle then becomes part of the cluster. Generate cliigters in this
wey and ca.lculate their fractal dimensionality. You should find df ~1:7; which
is about the same as a DLA. cluster. Interestingly, d ¢ for this cluster—dlffuswn
model seems to vary with p. Calculate dy for other values of p and show that dj
becomes larger (it should approach ~ 1.95) for large values of p. This calculation
was first-performed by Voss (see Voss {1984]).

s

7i7 FRACTAL DIMENSIONALITIES OF CURVES

| While DLA clusters may be nice to look at, we must still ask what it is about
fractals that makes them interesting from & physics point of view. We will discuss
this question in due course, but it- is useful to first to consider another problem
concerning fractal objects. It is convenient to introduce this problem using a class
of regular fractals that are known as Koch curves. In contrast to the fractal clusters
grown using the DLA model, Koch curves are generated by deterministic rules.
While such regular fractals do not have a direct connection with physics, they are
useful for learning more about fractals, as we will now see.

Perhaps the simplest way to define a Koch curve is through the examples in
Figure 7.21, which shows a family of such curves. The first member of the family
1s shown at the bottom and is just a straight line of length I; we will refer to this
as a Koch curve of order one. The second-order Koch curve (the second curve from
the bottom) is derived from the first-order curve by replacing the straight section
with four segments of length L /3, oriented with respect to the origina) (first-order
section) as shown. The third-order curve is obtained from the second-order curve
by replacing each of its straight sections by four more segments, with lengths L/9.
The fourth and higher-order curves are obtained in an analogous manner. This
procedure can be used to obtain curves of arbitrary order. _

The Koch ¢urves are thus defined recursively. A member of the series is
generated from the preceding member by replacing each Eiof its straight sections by
four new segments, as described above. We can clearly generate other types of
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