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Chapter 4 Oscillatory Systems

V. Choose R = 2000Q, C = 107 farads, and V = 10 volts. Do you expect Q(t)
to increase with 7 Does Q(r) increase indefinitely, or does it reach a steady-state
value? Use a program to solve (4.23) numerically using the Euler algorithm. What
value of Ar is necessary to obtain three decimal accuracy at ¢ = 0.005?

(b) What is the nature of your numerical solution to (4.23) at t = 0.05 for Az = 0.005,
0.0025, and 0.001? Does a small change in Af lead to a large change in the computed
value of Q?Is the Euler algorithm stable for reasonable values of A¢? ]

4.7 M PROJECTS

Project 4.17 Chemical oscillations
The kinetics of chemical reactions can be modeled by a system of coupled first-order
differential equations. As an example, consider the following reaction:

A+2B—>3B+C, (4.26)

where A, B, and C represent the concentrations of three different types of molecules. The
corresponding rate equations for this reaction are

dA

= = —kAR? (4.272)
dB
= = kAB? (4.27b)
dc
- = kAB2. . (4.27¢)

The rate at which the reaction proceeds is determined by the reaction constant k. The terms
on the right-hand side of (4.27) are positive if the concentration of the molecule increases
in (4.26) as it does for B and C, and negative if the concentration decreases as it does for
A. Note that the term 28 in the reaction (4.26) appears as B2 in the rate equation (4.27).
In (4.27) we have assumed that the reactants are well stirred so that there are no spatial
inhomogeneities. In Section 7.8 we will discuss the effects of spatial inhomogeneities due
to molecular diffusion.

Most chemical reactions proceed to equilibrium, where the mean concentrations of all
molecules are constant. However, if the concentrations of some molecules are replenished,
it is possible to observe oscillations and chaotic behavior (see Chapter 6). To obtain oscil-
lations, it is essential to have a series of chemical reactions such that the products of some
reactions are the reactants of others. In the following, we consider a simple set of reactions
that can lead to oscillations under certain conditions (see Lefever and Nicolis):

:\> A= X (4.28a)
o
B+X—>Y+D (4.28b)
2X +Y — 3X (4.28¢)
X—C. (4.28d)
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If we assume that the reverse reactions are negligible and A and B are held constant by an
external source, the corresponding rate equations are

d —

d—f =A—(B+1X+ X% (4.292)
ay

o= BX — X%y {4.29b)

For simplicity, we have chosen the rate constants to be unity.

(a) The steady state solution of (4.29) can be found by setting d X /dr and dY /di equal
to zero. Show that the steady stare values for (X, Y) are (A, B/A).

(b) Write a program to solve numerically the rate equations given by (4.29). Your pro-
gram should input the initial values of X and ¥ and the fixed concentrations A and
B, and plot X versus Y as the reactions evolve.

(c) Systematically vary the initial values of X and Y for given values of A and B. Are
their steady state behaviors independent of the initial conditions?

(d) Let the initial value of (X, ¥') equal (A -+ 0.001, B/A) for several different values
of A and B, that is, choose initial values close to the steady state values. Classify
which initial values result in steady state behavior (stable) and which ones show
periodic behavior (unstable). Find the relation between A and B that separates the
two types of behavior. ) ]

Project 4.18 Nerve impulses

In 1952 Hodgkin and Huxley developed a model of nerve impulses to understand the nerve
membrane potential of a giant squid nerve cell. The equations they developed are known as
the Hodgkin-Huxley equations. The idea is that a membrane can be treated as a capacitor
where CV = g, and thus the time rate of change of the membrane potential V' is proportional
to the current dg /dt flowing through the membrane. This current'is due to the pumping
of sodium and potassium ions through the membrane, a leakage current, and an external
current stimulus. The model is capable of producing single nerve impulses, trains of nerve
impulses, and other effects. The model is described by the following first-order differential
equations:

av

Cr = —8xn" (V.= Vi) = gnam’h(V = Vire) = g1V = Vi) f: Lewe(t) (4308
‘f‘,_’: = o‘n(l - n) - ﬁnn (430b)
dm
—— =0l —m) ~ B.m (4.30c¢)
dr - ]
dh ;
= = ap(l —h) — Buh, (4.30d)

where V is the membrane potential in millivolts (mV), n, m, and & are time dependent
functions that describe the gates that pump ions into or out of the cell, C is the membrane
capacitance per unit area, the g; are the conductances per unit area for potassium, sodium,
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and the leakage current, V; are the equilibrium potentials for each of the currents, and «;
and g; are nonlinear functions of V. We use the notation n, m, and & for the gate functions
because the notation is universally used in the literature. These gate functions are empirical
attempts to describe how the membrane controls the flow of ions into and out of the nerve
cell. Hodgkin and Huxley found the following empirical forms for «r; and 8;:

o = 0.0L(V + 10)/[4V/10 _ 13 (4.31a)
Bn = 0.125¢"7% (4.31b)
U = 0.01(V + 25)/[e@5TV10 1] (4.31c)
B = 4"/ (4.31d)
o = 0.07 "/ (4.31¢)
B = 1/[eCHV 117, (4.31£)

The parameter values are C = 1.0 uF/em?, gg = 36 mmho/cm?, gy, = 120 mmho/cm?,
g =03 mmho/cm?, Vg = 12mV, Vy, = —115mV, and V; = 10.6 mV. The unit mho
represents ohm™!, and the unit of time is milliseconds (ms). These parameters assume
that the resting potential of the nerve cell is zero; however, we now know that the resting
potential is about =70 mV.

We can use the ODE solver to solve (4.30) with the state vector {V, n, m, h, t}; the rates
are given by the right-hand side of (4.30). The following questions ask you to explore the
properties of the model.

(2) Write a program to plot 2, m, and & as a function of V' in the steady state (for which
# = = h = 0). Describe how these gates are operating.

(b) Write a program to simulate the nerve cell membrane potential and plot ¥ (¢). You
can use a simple Euler algorithm with a time step of 0.01 ms. Describe the behavior
of the potential when the external current is 0.

(c) Consider a current that is zero except for a one millisecond interval. Try a current
spike amplitude of 7 w.A. (that is, the external current equals 7 in our units). Describe
the resulting nerve impulse V (z). Is there a threshold value for the current below
which there is no large spike but only a broad peak?

(d) A constant current should produce a train of spikes. Try different amoplitudes for the
current and determine if there is a threshold current and how the spacing between
spikes depends on the amplitude of the external current.

(e) Consider a situation where there is a steady external current /; for 20 ms and then the
current increases to I, = I; + AI. There are three types of behavior depending on
I and AI. Describe the behavior for the following four situations: (1) [; = 2.0 uA,
Al =15uA; ()L =2.0pA, AT =5.0pA:(3) 1 =7.0uA, Al = 1.0¢A; and
@) I =7.0uA, Al =4.0pA. Try other values of 7, and AI as well. In which
cases do you obtain a steady spike traii? Which cases produce a single spike? What
other behavior do you find?

(D) Once a spike is triggered, it is frequently difficult to trigger another spike. Consider a
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current pulse of the same amplitude and duration at = 25 ms. What happens? What
happens if you add a third pulse at 30 ms? ]
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