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300 Chapter 8 The Dynamics of Many-Particle Systems

distances. Although this particular problem can be overcome by using a faster computer,
there are many problems for which no imaginable supercomputer would be sufficient. One
of the biggest current challenges is the protein folding problem. The biological function of
a protein is determined by its three-dimensional structure which is encoded by the sequence
of amino acids in the protein. At present, we know little about how the protein forms its
three-dimensional structure. Such formidable computational challenges remind us that we
cannot simply put a problem on a computer and let the computer tell us the answer. In
particular, for many problems, molecular dynamics methods need to be complemented by
other simulation methods, especially Monte Carlo methods (see Chapter 15).

The emphasis in current applications of molecular dynamics is shifting from studies of
simple equilibrium fluids to studies of more complex fluids and nonequilibrium systems. For
example, how does a solid form when the temperature of a liquid is lowered quickly? How
does a crack propagate in a brittle solid? What is the nature of the glass transition? Molecular
dynamics and related methods will play an important role in aiding our understanding of
these and many other problems.

8.12 M PROJECTS

Many of the pioneering applications of molecular dynamics were done on relatively small
systenas. Itis interesting to peruse the research literature of the past three decades to see how
much physical insight was obtained from these simulations. Many research-level problems
cen be generated by first reproducing previously published work and then extending the
work to larger systems or longer run times to obtain better statistics. Many related projects
are discussed in Chapter 15. :

Project 8.22 The classical Heisenberg model of magnetism
Magnetism is intrinsicafly a quantum phenomenon. One common medel of magnetism is
the Heisenberg model which is defined by the Hamiltonian or energy function:

H=-J) S-S, (8.43)

<ij>

where S; is the spin operator at the i th lattice site. The sum is over nearest neighbor sites of the
lattice, and the (positive) coupling constant J is a measure of the strength of the interaction
between spins. The negative sign indicates that the lowest energy state is ferromagnetic.
The magnetic moment of a particle on a site is proportional to the particle’s spin, and the
proportionality constant is absorbed into the constant J.

For many models of magnetism, such as the Ising model (see Section 15.5), there is
no obvious dynamics. However, for the Heisenberg model we can motivate a dynamics
using the standard rule for the time evolution of an operator given in quantum mechanics
texts. For simplicity, we will consider a one-dimensional lattice. The equation for the time
development becomes (see Slanit et al.)

ds;
dt

In general, S in (8.44) is an operator. However, if the magnitude of the spin is sufficiently
large, the system can be treated classically, and S can be interpreted as a three-dimensional

=J8 x (8;—; +8i11)- (8.44)
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unit vector. The dynamics in (8.44) conserves the total energy given in (8.43) and the total
magnetization, M = ), S;.

We can simulate the classical Heisenberg magnet using an ODE solver to solve the
first-order differential equation (8.44).

(&) Explain why there is no obvious way to determine the mean temperature of this
system.

(b} Write a program to simulate the Heisenberg model on a one-dimensional lattice
using periodic boundary conditions. Choose J =1 and N > 100. Use the RK4
ODE solver, and plot the energy and magnetization as a function of time. These two
quantities should be constant within the accuracy of the ODE solver. Also, plot each
component of the spin versus position or draw a three-dimensional representation
of the spin at each site, so that you can visualize the state of the system.

(¢) Begin with all spins in the positive z direction, except for one spin pointing in the
negative z direction. Define the energy of spin i as ¢; = —8; - (8;_; + Si11)/2. Use
N = 1000. Plot the local epergy €; as a function of 7. Describe how the local energy
diffuses. What patterns do you observe? Do the locations of the peaks in the local
energy move with a constant speed? .

(d) One of the interesting dynamical phenomena we can explore is that of spin waves.

Begin with all S,; =1 except for a group of 20 spins, where S,; = Acoski,

Sy = Asinki, and §,; = \/ 1— 582,482, Choose A = 0.2 and k = 1. Describe

the motion of the spins. Compute the mean position of this spin wave defined by

x=3,i(1—S,;). Show that x changes linearly with time indicating a constant
spin wave velocity. Vary k and A to determine what effect their values have on the
speed of the spin wave.

Read about sympletic algorithms in the article by Tsai, Lee, and Landau and write

your own ODE solver for one of them. Compare your results to the results you found

for the RK4 algorithm. Is the total energy better conserved for the same value of the
time step? |
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Project 8.23 Single particle metrics and ergodic behavior

As mentioned in Section 8.7, the quasi-ergodic hypothesis assumes that time averages and
ensemble averages are identical for a system in thermodynamic equilibrium. The assumption
is that if we run a molecular dynamics simulation for a sufficiently long time, then the
dynamical trajectory will fill the accessible phase space.

One way to confirm the quasi-ergodic hypothesis is to compute an ensemble average
by simulating many independent copies of the system of interest using different initial
configurations. Another way is to simulate a very large system and compare the behavior of
different parts. A more direct measure of ergodicity (see Thirumalai and Mountain) is based
on a comparison of the time averaged quantity f; () of f; for particle i to its average for all
other particles. If the system is ergodic, then all particles see the same average environment,
and Mme average f;(t) for each particle will be the same if ¢ is sufficiently long. Note
that f;(2) is the average of the quantity f; over the time interval 7 and not the value of f; at
time ¢. The time average of f; is defined as

oy 1 ! ’ ’
ity = ;/0 f@hyar, (8.45)
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