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Quantum scattering with a spherically
symmetric potential

2.1 Introduction

In this chapter, we shall discuss quantum scattering with a spherically symmetric
potential as a typical example of the problems studied in computational physics
[1, 2]. Scattering experiments are perhaps the most important tool for obtaining
detailed information on the structure of matter, in particular the interaction between
particles. Examples of scattering techniques include neutron and X-ray scattering
for liquids, atoms scattering from crystal surfaces and elementary particle collisions
in accelerators. In most of these scattering experiments, a beam of incident particles
hits a target which also consists of many particles. The distribution of scattered
particles over the different directions is then measured, for different energies of the
incident particles. This distribution is the result of many individual scattering events.
Quantum mechanics enables us, in principle, to evaluate for an individual event the
probabilities for the incident particles to be scattered off in different directions; and
this probability is identified with the measured distribution.

Suppose we have an idea of what the potential between the particles involved
in the scattering process might look like, for example from quantum mechanical
energy calculations (programs for this purpose will be discussed in the next few
chapters). We can then parametrise the interaction potential, i.e. we write it as
an analytic expression involving a set of constants: the parameters, If we evaluate
the scattering probability as a function of the scattering angle for different values
of these parameters, and compare the results with experimental scattering data,
we can find those parameter values for which the agreement between theory and
experiment is optimal. Of course, it would be nice if we could evaluate the scattering
potential directly from the scattering data (this is called the inverse problem), but
this is unfortunately very difficult (if not impossible): many different interaction
potentials can have similar scattering properties, as we shall see below.
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Figure 2.1. Geometry of a scattering process.

There might be many different motives for obtaining accurate interaction poten-
tzals. One is that we might use the interaction potential to make predictions about
the behaviour of a system consisting of many interacting particles, such as a dense
gas or a liquid. Methods for doing this will be discussed in Chapters 8 and 10.

Scattering may be elastic or inelastic. In the former case the energy is conserved,
in the latter it disappears. This means that energy transfer takes place from the
scattered particles to degrees of freedom which are not included explicitly in the
system (inclusion of these degrees of freedom would cause the energy to be con-
served). In this chapter we shall consider elastic scattering. We restrict ourselves
furthermore to spherically symmetric interaction potentials. In Chapter 15 we shall
briefly discuss scattering in the context of quantum field theory for elementary
particles.

We analyse the scattering process of a particle incident on a scattering centre
which is usually another particle." We assume that we know the scattering potential,
which is spherically symmetric so that it depends on the distance between the
particle and the scattering centre only.

In an experiment, one typically measures the scattered flux, that is, the intensity
of the outgoing beam for various directions which are denoted by the spatial angle
Q2 = (0, ) as in Figure 2.1, The differential cross section, do (£2) /d€2, describes
how these intensities are distributed over the various spatial angles €2, and the integ-
rated flux of the scattered particles is the total cross section, o1or. These experimental
quantities are what we want to calculate,

The scattering process is described by the solutions of the single-particle
Schrodinger equation involving the (reduced) mass m, the relative coordinate r
and the interaction potential V' between the particle and the interaction centre:

2
[_ﬁ—vz + V(r):| ¥y (r) = Ey(r). (2.1)
2m

: Every two-particle collision can be transtormed into a single scattering problem involving the relative
position; in the ransformed problem the incoming particle has the reduced mass m = mymy f(m| + my).
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This is a partial differential equation in three dimensions, which could be solved
using the ‘brute force’ discretisation methods presented in Appendix A, but exploit-
ing the spherical symmetry of the potential, we can solve the problem in another,
more elegant, way which, moreover, works much faster on a computer. More spe-
cifically, in Section 2.3 we shall establish a relation between the phase shift and the
scattering cross sections. In this section, we shall restrict ourselves to a description
of the concept of phase shift and describe how it can be obtained from the solutions
of the radial Schrodinger equation. The expressions for the scattering cross sections
will then be used to build the computer program which is described in Section 2.2.

For the potential V (r) we make the assumption that it vanishes for r larger than
a certain value rp.x. If we are dealing with an asymptotically decaying potential,
we neglect contributions from the potential beyond the range ryax, which must be
chosen suitably, or treat the tail in a perturbative manner as described in Problem 2.2.

For a spherically symmetric potential, the solution of the Schrodinger equation
can always be written as

-3 Y Azmﬁn 6, 0) (2.2)

[=0 m=—1

where u; satisfies the radial Schrodinger equation:

R g2 RA(+1
i__ + |:E V(r) — (—+2)j| ] w(ry=0. (2.3)

2m dr? 2mr

Figure 2.2 shows the solution of the radial Schrédinger equation with [ = 0 for
a square well potential for various well depths — our discussion applies also to
nonzero values of /. Outside the well, the solution i#; can be written as a linear
combination of the two independent solutions j; and ny, the regular and irregular
spherical Bessel functions. We write this linear combination in the particular form

ui(r > rmax) X krlcos 8;j;(kry — sin §;ny(kr)]; (24)
k = ~2mE/h.

Here rmax is the radius of the well, and §; is determined via a matching procedure
at the well boundary. The motivation for writing u; in this form follows from the
asymptotic expansion for the spherical Bessel functions:

krji(kry == sin(kr — Im/2) (2.5a)
krng(kr) ~ —cos(tkr — I /2) (2.5b)
which can be used to rewrite (2.4) as

wi(ry o sin(kr — I /2 + &), large r. (2.6)
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V=205

Figure 2.2. The radial wave functions for / = 0 for various square well potential
depths.

We see that u; approaches a sine-wave form for large r and the phase of this wave
is determined by §;, hence the name ‘phase shift’ for &, (for [ = 0, u, is a sine wave
forall ¥ > rpax).

The phase shift as a function of energy and / contains all the information about
the scattering properties of the potential. In particular, the phase shift enables us
to calculate the scattering cross sections and this will be done in Section 2.3; here
we simply quote the results. The differential cross section is given in terms of the
phase shift by

2
do ] | e
o=@ 2(21 + 1e'% sin(8;)P;(cos ) (2.7)
{=0
and for the total cross section we find
oo = 27 | do smé)(—j—ﬁ(B) = k—22(21+])sm .. (2.8)

/=0

Summarising the analysis up to this point, we see that the potential determines
the phase shift through the solution of the Schrodinger equation for r < rpax. The
phase shift acts as an intermediate object between the interaction potential and the
experimental scattering cross sections, as the latter can be determined from it.

Unfortunately, the expressions (2.7) and (2.8) contain sums over an infinite num-
ber of terms — hence they cannot be evaluated on the computer exactly. However,
there is a physical argument for cutting off these sums. Classically, only those waves
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with an angular momentum smaller than Alyax = Rkrma, will ‘feel’” the potential —
particles with higher /-values will pass by unaffected. Therefore we can safely cut
off the sums at a somewhat higher value of /; we can always check whether the res-
ults obtained change significantly when taking more terms into account. We shall
frequently encounter procedures similar to the cutting off described here. It 1s the
art of computational physics to find clever ways to reduce infinite problems to ones
which fit into the computer and still provide a reliable description.

How is the phase shift determined in practice? First, the Schrédinger equation
must be integrated from r = 0 outwards with boundary condition u;(r = 0) = 0. At
rmax, the numerical solution must be matched to the form (2.4) to fix &;. The match-
ing can be done either via the logarithmic denvative or using the value of the
numerical solution at two different points r| and r, beyond rmax. We will use the
latter method in order to avoid calculating derivatives. From (2.4) it follows directly
that the phase shift is given by

(1) _ (2)

K\
tan 8, = %— with (2.9a)
Kn! —n, )
i
= O (2.9b)
rau,

In this equation, j,“) stands for j;(kr)) etc.

2.2 A program for calculating cross sections

In this section we describe the construction of a program for calculating cross
sections for a particular scattering problem: hydrogen atoms scattered off (much
heavier) krypton atoms. Both atoms are considered as single particles and their
structure (nucleus and electrons) is not explicitly taken into account. After com-
pletion, we are able to compare the results with experimental data. The program
described here closely follows the work of Toennies et al. who carried out various
atomic collisions experimentally and modelled the results using a similar computer
program [3].
The program is built up in several steps.

o First, the integration method for solving the radial Schrédinger equation is
programmed. Various numerical methods can be used; we consider in particular
Numerov’s method (see Appendix A7.1).

e Second, we need routines yielding spherical Bessel functions in order to
determine the phase shift via the matching procedure Eq. (2.9a). If we want to
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calculate differential cross sections, we need Legendre polynomials too. In
Appendix A2, iterative methods for evaluating special functions are discussed.

« Finally, we complete the program with a routine for calculating the cross
sections from the phase shifts.

2.2.1 Numerov’s algorithm for the radial Schridinger equation

The radial Schrédinger equation is given in Eq. (2.3). We define

F{,r,E) :V(r)+h—2l,)(l—+22—E (2.10)
2mr
so that the radial Schrédinger equation now reads:
h? d?
2_mmu(r) = F(l,r,E)u(r). (2.11)

Units are chosen in which %A%/(2m) assumes a reasonable value, that is, not
extremely large and not extremely small (see below). You can choose a lib-
rary routine for integrating this equation but if you prefer to write one yourself,
Numerov’s method is a good choice because it combines the simplicity of a regular
mesh with good efficiency. The Runge—Kutta method can be used if you want to
have the freedom of varying the integration step when the potential changes rapidly
(see Problem 2.1).

Numerov’s algorithm is described in Appendix A7.1. It makes use of the special
structure of this equation to solve it with an error of order 4® (/1 is the discretisation
interval) using only a three-point method. For £%/2m = 1 it reads:

w(r +h) =2w(r) —w(r —h) + B F( r,E)u(r) (2.12)
and
h? -
u(r) = [1 — 1—2F(1,r, E)J w(r). (2.13)

It is useful to keep several things in mind when coding this algorithm.

o The function F(l, r, E), consisting of the energy, potential and centrifugal
barrier, given in Eq. (2.10), is coded into a function F (L, R, E), with L an
integer and R and E being real variables.

» Asyou can see from Eq. (2.9a), the value of the wave function is needed for two
values of the radial coordinate r, both beyond rya.. We can take r| equal to the
first integration point beyond rmax (if the grid constant 4 for the integration fits
an integer number of times Into ryay, it 1s natural to take #| = rpax). The value
of 5 is larger than r; and it is advisable to take it roughly half a wavelength
beyond the latter. The wavelength is given by A = 2n/k = 2nh/~/2mE. As
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both r| and rp are equal to an integer times the integration step A (they will in
general not differ by exactly half a wavelength) the precise values of r; and r;
are determined in the routine and output to the appropriate routine parameters.
o The starting value at r = 0 is given by u(r = 0) = 0. We do not know the value
of the derivative, which determines the normalisation of the resulting function —
this normalisation can be determined afterward. We take u;(0) = 0 and
w; (M) = WL (his the integration step), which is the asymptotic approximation
for u; near the origin for a regular poténtial (for the H-Kr interaction potential
which diverges strongly near the origin, we must use a different boundary
condition as we shall see below).

PROGRAMMING EXERCISE

Write a code for the Numerov algorithm. The input parameters to the routine
must include the integration step A, the radial quantum number /, the energy E
and the radial coordinate rpax; On output it yields the coordinates ry and r2
and the values of the wave function u;(ry) and u;(r2).

When building a program of some complexity, it is very important to build it
up step by step and to check every routine extensively. Comparison with analytical
solutions is then of prime importance. We now describe several checks that should
be performed after completion of the Numerov routine (it is also sensible to test a
library routine).

Check 1 The numerical solutions can be compared with analytical solutions for
the case of the three-dimensional harmonic oscillator. Bound states occur for
energies £ = ho(n+3/2),n =0, 1,2,...It1sconvenient in this case to choose
units such that A2/2m = 1. Taking V(r) = r?, we have fiw = 2 and the lowest
state occurs for [ = 0 with energy E = 3.0, with eigenfunction Ar exp(—r?/2), A
being some constant. Using £ = 3.0 in our numerical integration routine should
give us this solution with A = exp(h?/2) for the starting conditions described
above. Check this for r-values up to r;.

Check 2 The integration method has an error of @ (h®) (where @ indicates
‘order’). The error found at the end of a finite interval then turns out to be less
than O (h*) (see Problem A3). This can be checked by comparing the numerical
solution for the harmonic oscillator with the exact one. Carry out this compar-
1son for several values of N, for example N = 4,8, 16, ... For N large enough,
the difference between the exact and the numerical solution should decrease for
each new value of N by a factor of at least 16. If your program does not yield
this behaviour, there must be an error in the code!
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We shall now turn to the H-Kr interaction. The two-atom interaction potential for
atoms is often modelled by the so-called Lennard—Jones (L.J) potential, which has

the following form:
Jo 12 P 6
o =e | (£)" =2 (2)°). @.14)

This form of potential contains two parameters, £ and p, and for H-Kr the best
values for these are \

e=59meV and p =3.57A. (2.15)

Note that the energies are given in milli-electronvolts! In units of meV and
p for energy and distance respectively, the factor 2m/kE? is equal to about
6.12meV~'p~2. The potential used by Toennies et al. [3] included small cor-
rections to the L.ennard—Jones shape.

For the Lennard-Jones potential the integration of the radial Schrédinger equa-
tion gives problems for small r because of the 1/r'? divergence at the origin. We
avoid integrating in this region and start at a nonzero radius rmi, where we use the
analytic approximation of the solution for small r to find the starting values of the
numerical solution. For r < rpin, the term l/r12 dominates the other terms in the
potential and the energy, so that the Schrédinger equation reduces to

2
%;g = sarlﬁu(r) (2.16)

witha = 6.12. The solution of this equation is given by
u(r) = exp(—Cr ) (2.17)

with C = /ea/25. This fixes the starting values of the numerical solution at ryin
which should be chosen such that it can safely be assumed that the 1/r'> dominates
the remaining terms in the potential; typical values for the starting value of r lie
between 0.50 and 0.8 (the minimum of the Lennard—-Jones potential is found
at r = 2). Note that Eq. (2.17) provides the starting value and derivative of the
wavefunction u at the starting point. In Appendix A7.1 a procedure is described by
which two consecutive values can then be found which, when used as the starting
values of the Numerov method, provide a solution with the proper accuracy. This
will not be the case when two consecutive points are simply set to the solution
Eq. (2.17), as this is not an exact solution to either the continuum differential
equation or to its discrete (Numerov) form.

You can adapt your program to the problem at hand by simply changing the
function £ ({, r, E) to contain the Lennard—Jones potential and by implementing the
boundary conditions as described. As a check, you can verify that the solution does
not become enormously large or remain very small.
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2.2.2 The spherical Bessel functions

For the present problem, you need only the first six spherical Bessel functions j; and
ny, and you can type in the explicit expressions directly. If you want a general routine
for the spherical Bessel functions, however, you can use the recursive procedures
described in Appendix A (see also Problem Al). Although upward recursion can
be unstable for j; (see Appendix A), this is not noticeable for the small / values (up
to [ = 6) that we need and you can safely use the simple upward recursion for both
ny and j; (or use a library routine).

PROGRAMMING EXERCISE

Write routines for generating the values of the spherical Bessel functions j;
and n;. On input, the values of [ and the argument x are specified and on output
the value of the appropriate Bessel function is obtained.

Check 3 If your program is correct, it should yield the values for j5 and ns given
in Problem Al.

2.2.3 Putting the pieces together: results

To obtain the scattering cross sections, some extra routines must be added to the
program. First of all, the phase shift must be extracted from the values ry, 4(r|) and
r2, u(r2). This is straightforward using Eq. (2.9a). The total cross section can then
readily be calculated using Eq. (2.8). The choice of rjax must be made carefully,
preferably keeping the error of the same order as the O(h®) error of the Numerov
routine (or the error of your library routine). In Problem 2.2 it is shown that the
deviation in the phase shift caused by cutting off the potential at rpax is given by

h2
and this formula can be used to estimate the resulting error in the phase shift or to
improve the value found for it with a potential cut-off beyond rpax. A good value
1S Fmax =~ 5p0.
For the determination of the differential cross section you will need additional
routines for the Legendre polynomials.? In the following we shall only describe
results for the total cross section.

2m * 5
Adj = ——k Ji tkr)Viy(ryrodr (2.18)

PROGRAMMING EXERCISE

Add the necessary routines to the ones you have written so far and combine
them into a program for calculating the total cross section.

* These can be generated using the recursion relation (f + DPyy (x) = 21+ DaPy(x) — 1P (x).
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Figure 2.3. The effective potential for the Lennard—Jones interaction for various
[-values.

A computer program similar to the one described here was used by Toennies et al.
[3] to compare the results of scattering experiments with theory. The experiment
consisted of the bombardment of krypton atoms with hydrogen atoms. Figure 2.3
shows the Lennard—Jones interaction potential plus the centrifugal barrier /(I41) /r?
of the radial Schrodinger equation. For higher /-values, the potential consists essen-
tially of a hard core, a well and a barrier which is caused by the 1 /r? centrifugal term
in the Schrédinger equation. In such a potential, quasi-bound states are possible.
These are states which would be genuine bound states for a potential for which the
barrier does not drop to zero for larger values of r, but remains at its maximum
height. You can imagine the following to happen when a particle is injected into
the potential at precisely this energy: it tunnels through the barrier, remains in the
well for a relatively long time, and then tunnels outward through the barrier in
an arbitrary direction because it has ‘forgotten’ its original direction. In wave-like
terms, the particle resonates in the well, and this state decays after a relatively long
time. This phenomenon is called ‘scattering resonance’. This means that particles
injected at this energy are strongly scattered and this shows up as a peak in the total
Cross section.

Such peaks can be seen in Figure 2.4, which shows the total cross section as a
function of the energy calculated with a program as described above. The peaks are
dueto! =4,/ = Sand! = 6 scattering, with energies increasing with /. Figure 2.5
finally shows the experimental results for the total cross section for H-Kr. We see
that the agreement is excellent.

You should be able now to reproduce the data of Figure 2.4 with your program.
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Figure 2.4. The total cross section shown as function of the energy for a Lennard-
Jones potential modelling the H-Kr system. Peaks correspond to the resonant
scattering states. The total cross section is expressed in terms of the range p of the
Lennard—Jones potential.
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Figure 2.5. Experimental results as obtained by Toennies et al. [3] for the total
cross section (arbitrary units) of the scattering of hydrogen atoms by krypton atoms
as function of centre of mass energy.
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*2.3 Calculation of scattering cross sections

In this section we derive Egs. (2.7) and (2.8). At a large distance from the scattering
centre we can make an Ansatz for the wave function. This consists of the incoming
beam and a scattered wave:

) ikr
() o FT L F(O) . (2.19)

r

Here, 0 is the angle between the incoming beam and the line passing through r
and the scattering centre. The function f does not depend on the azimuthal angle ¢
because the incoming wave has azimuthal symmetry, and the spherically symmetric
potential will not generate m # 0 contributions to the scattered wave. f(8) is called
the scattering amplitude. From the Ansatz it follows that the differential cross section
is given directly by the square of this amplitude:

do )
o = O (2.20)

with the appropriate normalisation (see for example Ref. [1]).
Beyond rpnax, the solution can also be written in the form (2.2) leaving out all
m 3 0 contributions because of the azimuthal symmetry:

W(r) = ZAﬁ”fr)P,(cos 6) (2.21)
(=0

where we have used the fact that Yé(é’, ¢) is proportional to P;(cos ). Because the
potential vanishes in the region r > ryax, the solution u;(r)/r is given by the linear
combination of the regular and irregular spherical Bessel functions, and as we have
seen this reduces for large r to

[
u;(r) A sin (kr — ; + 61) . (2.22)

We want to derive the scattering amplitude f (6) by equating the expressions (2.19)
and (2.21) for the wave function. For large r we obtain, using (2.22):

elkr

. (2.23)
.

i sin(kr — Im/2 + 8))
DA
kr

} P(cos0) = eXT 4+ £(6)
=0

We write the right hand side of this equation as an expansion similar to that in the
left hand side, using the following expression for a plane wave [4]

e = (2L + D)i'ji(kr)Pi(cos 6). (2.24)
=0
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f(0) can also be written as an expansion in Legendre polynomials:

F©) =) fiP(cos0), (2.25)

=0

so that we obtain:

ZAI [sin(kr — /24 5;):' Py(c0s0)
kr
/=0
& ei.kr
— L+ Diljkr) + 7 — | Pi(cos 6). (2.26)
=0

If we substitute the asymptotic form (2.5a) of j; in the right hand side, we find:

ZAI [sin(kr — /2 4+ 8))

= } Pi(cos 8)

(=0

1 Z [21+1( ik (ﬁ N %) eikrj| Pi(cosB).  (2.27)

Both the left and the right hand sides of (2.27) contain incoming and outgoing spher-
ical waves (the occurrence of incoming spherical waves does not violate causality:
they arise from the incoming plane wave). For each [, the prefactors of the incoming
and outgoing waves should be equal on both sides in (2.27). This condition leads to

= (21 + ey (2.28)
and
U+1 .
fi= Te"sf sin(3)). (2.29)

Using (2.20), (2.25), and (2.29), we can write down an expression for the
differential cross section in terms of the phase shifts §;:

2

> Q1+ 1)e" sin(8)P(cos B)| (2.30)
/=0

do N
d2 k2

For the total cross section we find, using the orthonormality relations of the Legendre
polynomials:

d 47
Ot = 27T [ dé sinQa%(B) = k_j; 2(21 + 1) sin? dy. (2.31)
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Exercises

I [C] Try using the Runge—Kutta method with an adaptive time step to integrate the
radial Schrodinger equation in the program of Section 2.2, keeping the estimated
error fixed as described in Appendix A7.1. What is the advantage of this method over
Numerov’s method for this particular case?

2.2 [C] Consider two radial potentials V| and V> and the solutions “1( and u[ ) to the
radial Schrédinger equation for these two potentials (at the same energy):

2 42 )
FL%;+(E—vun—hlﬁ%ﬁ)}&%n=o

2mdr? 2mr
K2 d? R+ 1) ;
[%W“L (E‘ V() ‘Tmrz—)]“ﬁ =0

(a) Show that by multiplying the first equation from the left by ugz)(r) and the second
one from the left by u‘l)(r) and then subtracting, it follows that:

L ’—2 (l) du (2) L
fd@%mwm—meWn=i{ m)a() (L)~ fﬂ-

0

(b) If V; - 0 for large r, then both solutions are given for large r by
sinfkr — (I /2) + 51(')]/k. Show that from this it follows that:

o0 2
fo druP (NI (r) = Vo)l () = " sm(c‘i ~8").

Now take V| = 0 and V, = V small everywhere. In that case, u, ) and u( % on the left
hand side can both be approximated by rj;(kr), so that we obtain:

2mk

B2 0
This 1s the Born approximation for the phase shift. This approximation works well for
potentials that are small with respect to the energy.

&~ — drr Ji Z(kr)V (r).

(c) [C] Write a (very simple) routine for calculating this integral (or use a library
routine). Of course, it is sufficient to carry out the integration up to ryax since
beyond that range V = 0. Compare the Born approximation with the solution of
the program developed in the previous problem. For the potential, take a weak
Gaussian well:

V(r) = —Aexp[—(r — D21, X < Fmax
and

V(ir)=0, x> rmax.

with A = 0.01 and rynax chosen suitably. Result?
(d) Now consider the analysis of items (a) and (b) where V| is the Lennard—Jones
potential without cut-off and V, with cut-off. Show that the phase shift for the
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Lennard—Jones potential without cut-off is given by the phase shift for the
potential with cut-off plus a correction given by:

. 2m 5 ?
Ab = ﬁk Jikr)Vyy(r)redr.
- !

“max
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