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Abstract 

We can have three common interpretations regarding the representation in quantum 

mechanics: representation in term of bases system, representation in the type of vector 

spaces, and representation of time dependency for state vectors and operators. The 

formulation of quantum mechanics itself is already based on two different bases 

systems, discrete bases and continuous bases. In other way, we are more familiar in 

the ordinary spatial coordinates of   , but it is sometimes even useful where we need 

to have the wave function be written in position space,   . Finally, we have three 

pictures of quantum mechanics to readily relate the time evolution factors. 
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Background of School of Physics 

History 

When Science University of Malaysia (USM) established at the year of 1969, 

the School of Physics was among the very first school which was set up along with 

two other schools. The School of Physics is located behind the first Hamzah Sendut 

Library, and side to side with school of Industrial Technologies. According to the 

main website of School of Physics, the main objective is to produce competent, 

knowledgeable, creative, and innovative Physics and Applied Physics graduates for 

the nation’s rapid growth and progress. They strive to make generation of Malaysian 

scientifically and culturally stimulation, resplendent, and fertile, because paramount 

among these, we believe that to be scientifically illiterate is tantamount to being 

essentially uncultured. Moreover, the industrial significant of this school is intricately 

connected to the flow of discoveries in physics field which eventually lead to a 

growth in various industries such as microelectronics, optical, and nuclear 

technologies. School of Physics is providing many state-of-the-art pertinent facilities 

and know-how for the study of physics and its related disciplines. 

 

The area which the School of Physics specialized in Theoretical Physics, 

Geophysics, Medical Physics, Applied Physics and Engineering Physics. Since the 

recent acknowledgement of Science University of Malaysia (USM) under the criteria 

of accelerated program for excellence (apex), the School of Physics has focus more on 

research and development. The school of physics carries out researches in diverse 

areas of physics. Among the research activities carried out are radiation monitoring, 

radiation dosimetry, and industrial applications of radioisotopes; X-ray fluorescence, 

powder and single crystal spectrometry; material testing (mechanical, electrical, and 

optical) and device fabrication and characterization calibration of electronic 

equipment; solar energy collector design; bioenergy; geophysical exploration; 

engineering seismology; groundwater prospecting and hydro geological studies using 

geophysical methods; and semiconductor materials and devices fabrication processes. 
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CHAPTER 1 

INTRODUCTION 

 

The theory of quantum mechanics deals in essence with solving the following 

eigenvalue problem: 

  ̂| ⟩   | ⟩ (1.1) 

where  ̂  is the Hamiltonian of the system. This equation is general and does not 

depend on any coordinate system or representation. But to solve it, we need to 

represent it in a given basis system. Historically follow, quantum mechanics was 

formulated in two different ways: 

- Schrödinger’s wave mechanics in continuous basis system, and 

- Heisenberg’s matrix mechanics in discrete basis system. 

Though, they are proved to be equivalence a few years after the formulation using the 

theory of unitary transformations. 

 

Representation in quantum mechanics means the form of equation for 

eigenvalue problem (1.1) we are going to represent in with proper basis systems and 

phase space: of position space or momentum space. 

 

There are many representations of wave function and operators, and the 

connection between various representations is provided by unitary transformations as 

well. Each class of representation, also called a picture, differs from others in the way 

it treats the time evolution of the system. The most encountered pictures in quantum 

mechanics are: the Schrödinger picture, the Heisenberg picture, and the interaction 

picture. 

 

The Schrödinger picture is useful when describing phenomena with time-

independent Hamiltonians, whereas Heisenberg pictures and the interaction pictures 

are useful when describing phenomena with time-dependent Hamiltonians. 
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CHAPTER 2 

MATHEMATICAL FORMALISM AND DIRAC BRA-KETS NOTATION 

 

2.1 Phase Space 

It is essentials to understand the concept of phase space, for we need to 

represent the eigenvalue equation (1.1) in either position space or momentum space. 

Position space can easily understand as our ordinary spatial coordinate system. While 

in momentum space we need suitable transformations to represent the wave function. 

Definition of Phase space 

For a system with n degrees of freedom, the 2n-dimensional space with coordinates 

(q1, q2, …  qn, p1, p2, … pn), where the ‘q’s describe the degrees of freedom of the 

system and the ‘p’s are the corresponding momenta. Each point represents a state of 

the system. As the system changes with time the represented points trace out a curve 

in phase space called trajectory. 

 

2.2 The Hilbert Space 

A Hilbert space is a function space consists of a set of vectors         and a set of 

scalars         which satisfy the following four properties: 

a) Hilbert space is a linear space. 

b) Hilbert space has a defined scalar product that is strictly positive. The scalar 

product of ψ and φ is: (   )        complex number. So, the quantity (   )   

(   ) since in general          . 

c) Hilbert space is separable. 

d) Hilbert space is complete. 

 

2.2.1 Square-Integrable Function 

The scalar product of two functions  ( ) and  ( ) is given as: 

 
(   )    ∫  ( ) ( )   

 

(2.1) 

In order for the function space to possess a scalar product, we must have (   )      

finite. It is thus necessary that every admissible function be square integrable: 

 
(   )    ∫| ( )|       

 

(2.2) 
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In short, the space spanned by square-integrable functions is a Hilbert space. 

 

2.3 Dirac Notation 

Dirac introduced the concepts of kets, bras, and bra-kets. 

A) Kets: element of a vector space 

Dirac denoted the state vector   by the symbol | ⟩, which he called the ket vector or 

simply ket. Kets belong to Hilbert space or in short, the ket-space. 

B) Bras: element of a dual space 

From linear algebra, a dual space can be associated with every vector space. Dirac 

denoted the element ⟨ | if a dual space as a bra vector, or simply a bra. For every ket 

| ⟩ there exists a unique bra ⟨ | and vice versa. Here, bras belong to dual (Hilbert) 

space. 

C) Bra-ket: Dirac notation for the scalar product 

Also known as inner product, denoted by the symbol ⟨  |  ⟩. Dirac call this bra-ket. For 

instance, 

 (   )  ⟨ | ⟩ (2.3) 

when a ket (or bra) is multiplied by a complex number, we get a ket (or bra). In wave 

mechanics we deal with wave function  ( ⃑  ) which are also elements of Hilbert 

space, but in general formalism of quantum mechanics, we deal with abstract kets | ⟩. 

Like wave function, a ket represents the system completely, and hence, knowing | ⟩ 

means knowing all its amplitudes in all possible representations. In the position 

coordinate representation, the scalar product ⟨ | ⟩ is given by: 

 
⟨ | ⟩   ∫  ( ⃑  ) ( ⃑  )    

 

(2.4) 

 

2.3.1 Properties of kets, bras and bra-kets 

a) Every kets has a corresponding bra 

one-to-one correspondence between bras and kets: 

  | ⟩   | ⟩    ⟨ |    ⟨ | (2.6) 

where  a and b are complex number. Also: 

|  ⟩   | ⟩ , ⟨  |    ⟨ | (2.7) 

 

As explained in 2.3 B):  | ⟩  ⟨ | (2.5) 
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b) Scalar product 

Since the scalar product is a complex number, the ordering matters, for 

 ⟨ | ⟩  ⟨ | ⟩ (2.8) 

 

⟨         |         ⟩

   
   ⟨  |  ⟩    

   ⟨  |  ⟩    
   ⟨  |  ⟩    

   ⟨  |  ⟩ 

 

(2.12) 

 

c) The norm is real and positive 

For any | ⟩, the norm √⟨ | ⟩ is real and positive. 

⟨ | ⟩  is equal to zero only for the case where | ⟩    and if the state | ⟩  is 

normalized, ⟨ | ⟩   . 

 

d) Schwarz inequality 

For any two states | ⟩ and | ⟩, we have 

 |⟨ | ⟩|  ⟨ | ⟩⟨ | ⟩ (2.13) 

If | ⟩ and | ⟩ are linearly dependent, where | ⟩   | ⟩, where   is a scalar, this 

relation becomes an equality. The Schwarz inequality (2.13) is analogous to the 

following relation of the real Euclidean space: 

 | ⃗   ⃗⃗|
 
 | ⃗|

 
| ⃗⃗|

 
 (2.14) 

 

e) Triangle inequality 

 √⟨   |   ⟩  √⟨ | ⟩  √⟨ | ⟩ (2.15) 

Again, if | ⟩ and | ⟩ are linearly dependent, | ⟩   | ⟩ and if the scalar   is real 

and positive, the inequality becomes an equality. The inequality in Euclidean space is 

given by 

 | ⃗   ⃗⃗|  | ⃗|  | ⃗⃗| (2.16) 

By using (2.4), 
⟨ | ⟩    (∫  ( ⃑  ) ( ⃑  )   *

 

 
 

  
 ∫  ( ⃑  ) ( ⃑  )    

 

   ⟨ | ⟩ (2.9) 

Also, ⟨ |         ⟩    ⟨ |  ⟩    ⟨ |  ⟩ (2.10) 

 ⟨         | ⟩    
 ⟨  | ⟩    

 ⟨  | ⟩ (2.11) 
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f) Orthogonal states 

Two kets, | ⟩ and | ⟩, are said to be orthogonal if they have vanishing scalar product: 

 ⟨ | ⟩    (2.17) 

 

g) Orthonormal states 

Two kets, | ⟩ and | ⟩, are said to be orthonormal if they are orthogonal and each are 

normalized. That is: 

 ⟨ | ⟩    , ⟨ | ⟩    , ⟨ | ⟩    (2.18) 

 

2.4 Operators 

2.4.1 Definitions 

An operator  ̂ is a mathematical rule that when apply to a ket | ⟩ transform it into 

another ket |  ⟩ of the same space. The same goes to bra ⟨ |. 

 ̂| ⟩  |  ⟩ , ⟨ | ̂  ⟨  | (2.19) 

Similarly to wave functions: 

 ̂ ( ⃑)    ( ⃑) ,  ( ⃑) ̂    ( ⃑) (2.20) 

The product of two operators is not commutative: 

  ̂ ̂   ̂ ̂ (2.21) 

However, the product is associative. 

  ̂ ̂ ̂   ̂( ̂ ̂)  ( ̂ ̂) ̂ (2.22) 

The order when the product  ̂ ̂ operates on a ket | ⟩ is important, 

  ̂ ̂| ⟩   ̂( ̂| ⟩) (2.23) 

An operator  ̂ is said to be linear if it obey the distributive law. 

  ̂(  |  ⟩    |  ⟩)     ̂|  ⟩     ̂|  ⟩ (2.24) 

and (⟨  |   ⟨  |  ) ̂    ⟨  | ̂    ⟨  | ̂ (2.25) 

 

2.4.2 Hermitian adjoin 

The Hermitian adjoin  ̂  of an operator  ̂ is defined by the relation 

 ⟨ | ̂ | ⟩  ⟨ | ̂| ⟩
 
 (2.26) 

In algebra, adjoin meant conjugate transpose. So, for a complex number  ,      . 

While for bras and kets, (| ⟩ )  ⟨ | and (⟨ |)  | ⟩. 

We have properties: ( ̂ )
 
  ̂ (2.27) 
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(  ̂)
 
    ̂  (2.28) 

( ̂ )
 
 ( ̂ )

 
 (2.29) 

( ̂   ̂   ̂   ̂)
 
  ̂   ̂   ̂   ̂  (2.30) 

( ̂ ̂ ̂ ̂)
 
  ̂  ̂  ̂  ̂  (2.31) 

( ̂ ̂ ̂ ̂| ⟩)
 
 ⟨ | ̂  ̂  ̂  ̂  (2.32) 

The Hermitian adjoin of the operator | ⟩⟨ | is given by 

 (| ⟩⟨ |)  | ⟩⟨ | (2.33) 

Operators act inside kets and bras as follows: 

|  ̂ ⟩    ̂| ⟩ , ⟨  ̂ |    ⟨ | ̂  (2.34) 

For that, we have ⟨  ̂  |    ⟨ |( ̂ )
 
   ⟨ | ̂. Hence we can write: 

 ⟨ | ̂| ⟩  ⟨ ̂  | ⟩  ⟨ | ̂ ⟩ (2.35) 

 

2.4.3 Hermitian and skew-Hermitian operators 

An operator  ̂ is said to be Hermitian if, 

 ̂   ̂  or ⟨ | ̂| ⟩  ⟨ | ̂| ⟩
 
 (2.36) 

On the other hand, an operator  ̂ is said to be skew-Hermitian if, 

 ̂    ̂  or ⟨ | ̂| ⟩   ⟨ | ̂| ⟩
 
 (2.37) 

 

2.4.4 Commutator algebra 

The commutator of two operator  ̂ and  ̂, denoted by [ ̂  ̂] is defined by: 

 [ ̂  ̂]   ̂ ̂   ̂ ̂ (2.38) 

And the anti-commutator { ̂  ̂} is defined by: 

 { ̂  ̂}   ̂ ̂   ̂ ̂ (2.39) 

If  ̂ ̂   ̂ ̂ , the two operators are said to commute. Of course, any operator 

commutes with itself: 

 [ ̂  ̂]    (2.40) 

If the two operators are Hermitian, and their product is also Hermitian, these operators 

commute: 

( ̂ ̂)
 
  ̂  ̂   ̂ ̂ , also ( ̂ ̂)

 
  ̂ ̂ thus,   ̂ ̂   ̂ ̂ (2.41) 

We have the following properties: 
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Anti-symmetry: [ ̂  ̂]   [ ̂  ̂] (2.42) 

Linearity: [ ̂  ̂   ̂   ]  [ ̂  ̂]  [ ̂  ̂]    (2.43) 

Adjoin of a commutator: [ ̂  ̂]
 
 [ ̂   ̂ ] (2.44) 

Distributive: [ ̂  ̂ ̂]  [ ̂  ̂] ̂   ̂[ ̂  ̂] (2.45) 

 [ ̂ ̂  ̂]   ̂[ ̂  ̂]  [ ̂  ̂] ̂ (2.46) 

Jacobi identity: 0 ̂ [ ̂  ̂]1  0 ̂ [ ̂  ̂]1  0 ̂ [ ̂  ̂]1    (2.47) 

Operator commute with scalars: [ ̂  ]    (2.48) 

 

2.4.5 Unitary operators,  ̂ 

 ̂   ̂   and  ̂ ̂   ̂  ̂   ̂ (2.49) 

 

2.4.6 Eigenvalues and eigenvectors of an operator 

If the action of an operator  ̂ on | ⟩ give: 

  ̂| ⟩   | ⟩ (2.50) 

Where    is a complex number, then the state vector | ⟩ is eigenvector (eigenstate) of 

operator  ̂, while   is an eigenvalue of  ̂. 

We have some useful theorems pertaining to the eigenvalue problem. 

Theorem 2.1 

For a Hermitian operator, say  ̂   ̂  for  ̂|  ⟩    |  ⟩.We have the eigenvalues 

   are real and the eigenvectors belonging to distinct eigenvalues are orthogonal. 

Proof: 

  ̂|  ⟩    |  ⟩    ⟨  | ̂|  ⟩    ⟨  |  ⟩ (2.51) 

 ⟨  | ̂    
 ⟨  |    ⟨  | ̂ |  ⟩    

 ⟨  |  ⟩ (2.52) 

Take the difference, and such that  ̂   ̂ , 

 (     
 )⟨  |  ⟩    (2.53) 

With two possible cases: 

case    : since ⟨  |  ⟩   , the vanishing term      
   , for      

 ,    

must be real. 

case    : for      , with   
    , the vanishing term ⟨  |  ⟩   , that is 

|  ⟩ and |  ⟩ must be orthogonal. When |  ⟩ is normalized, then ⟨  |  ⟩     , 

where     2
      
      

 is the Kronecker delta. 
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Theorem 2.2 

For two non-degenerate Hermitian operators,  ̂ and  ̂  to commute, they share the 

same set of eigenvectors. 

Proof: 

consider  ̂|  ⟩    |  ⟩ (2.54) 

for  ̂( ̂|  ⟩)   ̂( ̂|  ⟩)    ( ̂|  ⟩) (2.55) 

Since |  ⟩ is unique, we must allow  ̂|  ⟩  |  ⟩ (2.56) 

and with a constant, say  ̂|  ⟩    |  ⟩ (2.57) 

we see that |  ⟩ is also eigenstate for operator  ̂. 

 

2.5 Representation in Discrete Bases 

Consider the set of *|  ⟩+ which make up a discrete, complete and orthonormal basis, 

of the Hilbert space. We have the orthonormality of the base kets being expressed by: 

 ⟨  |  ⟩      (2.58) 

The completeness of the basis is given by 

 
∑|  ⟩⟨  |

 

   

  ̂ 
 

(2.59) 

where   ̂ is the unit operator. 

 

2.5.1 Matrix representation of kets and bras 

The completeness property of this basis enables us to expand any state vector | ⟩ in 

terms of the base kets |  ⟩: 

 
| ⟩   ̂| ⟩  (∑|  ⟩⟨  |

 

   

+ | ⟩  ∑  |  ⟩

 

   

 
 

(2.60) 

where the coefficient   , which is equal to ⟨  | ⟩, represents the projection of | ⟩ 

onto |  ⟩;    is the component of | ⟩ along the vector |  ⟩. So, within the basis 

*|  ⟩+, the ket | ⟩ can be represented by a column vector: 

 

| ⟩  

(

 
 

⟨  | ⟩

⟨  | ⟩
 

⟨  | ⟩
 )

 
 

 

(

 

  

  

 
  

 )

  

 

 

(2.61) 

While the bra ⟨ | can be represented by a row vector: 
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⟨ |   (⟨ |  ⟩ ⟨ |  ⟩  ⟨ |  ⟩  )  

  (⟨  | ⟩ ⟨  | ⟩  ⟨  | ⟩  )  

  (  
   

    
  ) (2.62) 

Using this representation, we see that a bra-ket ⟨ | ⟩ is a complex number equal to 

the matrix product of the row matrix corresponding to the bra ⟨ | with the column 

matrix corresponding to the ket | ⟩: 

 

⟨ | ⟩  (  
   

    
  )

(

 
 

  

  

 
  

 )

 
 

 ∑  
   

 

 

 

 

(2.63) 

where    ⟨  | ⟩. We see that, within this representation, the matrices representing 

| ⟩ and ⟨ | are Hermitian adjoins of each other. 

 

2.5.2 Matrix representation of operators 

For each linear operator  ̂, we can write 

 
 ̂   ̂ ̂ ̂  (∑|  ⟩⟨  |

 

   

+  ̂ (∑|  ⟩⟨  |

 

   

+  ∑   |  ⟩⟨  |

  

 
 

(2.64) 

where     is the    matrix element of the operator  ̂: 

     ⟨  | ̂|  ⟩ (2.65) 

We see that the operator  ̂ is represented, within the basis *|  ⟩+, by a square matrix: 

 

  (

      

      

    
    

      

  
    
  

, 

 

 

(2.66) 

For instance, the unit operator  ̂ is represented by a unit matrix: 

 
 ̂  (

  
  

 
 

   
) 

 

(2.67) 

In summary, kets are represented by a column vectors, bras by row vectors and 

operators by square matrices. 

 

2.5.3 Matrix representation of the eigenvalue problem 

As in equation (2.50), we want to find the eigenvalues   and the eigenvectors | ⟩ of 

an operator  ̂ such that  ̂| ⟩   | ⟩, where   is a complex number. Inserting the unit 

operator between  ̂ and | ⟩ and multiplying by ⟨  |, we have: 
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⟨  | ̂ (∑|  ⟩⟨  |

 

+ | ⟩   ⟨  | (∑|  ⟩⟨  |

 

+ | ⟩ 
 

(2.68) 

or ∑   ⟨  | ⟩

 

  ∑⟨  | ⟩

 

    
 

(2.69) 

which can be rewritten as ∑,        -⟨  | ⟩

 

   
 

(2.70) 

with     ⟨  | ̂|  ⟩. 

The system of equations can have nonzero solutions only if its determinant vanishes: 

    (        )    (2.71) 

 

2.6 Representation in Continuous Bases 

2.6.1 General treatment 

The orthonormality condition of the base kets of the continuous basis |  ⟩ is express 

not by the usual discrete Kronecker delta as in (2.58) but by Dirac’s continuous delta  

function: ⟨  |   ⟩   (    ) (2.72) 

where   and    are continuous parameters and where  (    ) is the Dirac delta 

function, which is defined by 

 
 ( )  

 

  
∫       

 

  

 
 

(2.73) 

As for the completeness condition for this continuous basis, it is given by an integral 

over the continuous variable 

 
∫   

 

  

|  ⟩⟨  |   ̂ 
 

(2.74) 

where   ̂ is the unit operator. 

Every state vector | ⟩ can be expanded in terms of the complete set of basis kets |  ⟩: 

 
| ⟩   ̂| ⟩  (∫   

 

  

|  ⟩⟨  |) | ⟩  ∫   
 

  

 ( )⟨  | 
 

(2.75) 

where   ( )  ⟨  | ⟩ represents the projection of | ⟩ on |  ⟩. 

The norm of the continuous base kets is infinite, from (2.72) and (2.73), 

 
⟨  |  ⟩   ( )  

 

  
∫   

 

  

   
 

(2.76) 
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this implies that the kets |  ⟩ are not square-integrable and hence are not elements of 

the Hilbert space. Despite the divergence of the norm of |  ⟩, the scalar product 

⟨  | ⟩ is finite. 

 

2.7 One-Dimensional Delta Function 

Dirac delta function,  ( ) in one-dimension is : 

 ( )  {
           
          

 
with 

∫  ( )  
 

  

   
 

(2.77) 

We should mention that the  -function is not a function in the usual mathematical 

sense. It can be expressed as the limit of analytical function such as 

 
 ( )     

   

   (  ⁄ )

  
 

 

(2.78) 

The Fourier transform of  ( ), which can be obtained from: 

 

 ( )     
   

   (  ⁄ )

  
 

 

 
    

   
[

 

    
(    ⁄       ⁄ )] , since      

 

  
(      ) 

 
 

 

  
   
   

∫       
  

 ⁄

  
 ⁄

 
 

 
 

 

  
∫       

 

  

 
 

(2.79) 

The same result as mentioned in (2.73). 

Now,  (   )  would be a spike of area 1 at point   instead of 0. Thus, if you 

multiply  (   ) by an ordinary function  ( ), it’s the same as multiplying by  ( ) 

because the product is zero anyway except at the point a: 

  ( ) (   )   ( ) (   ) (2.80) 

In particular, 
∫  ( ) (   )  

 

  

  ( )∫  (   )  
 

  

  ( ) 
 

(2.81) 

So, we come to a general result: 

 
∫   (    ) ( )   (  ) 

(2.82) 
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CHAPTER 3 

SCHRÖDINGER EQUATION 

 

3.1 Wave Function 

Inspired by de Broglie’s hypothesis, Schrödinger’s wave mechanics deals with 

the dynamic of microscopic particles by means of wave function   ( ⃑  ). Quantum 

mechanics describe the state of a particle by Born’s statistical interpretation of the 

wave function, where | ( ⃑  )|  gives the probability of finding the particle at certain 

point of space at time  . 

 

3.1.1 Wave function in position space 

Let’s write down the eigenvalue equation for the position operator  ̂⃑ , denoting the 

position eigenstates as | ⃑⟩ and the eigenvalues as  ⃑, the position vector: 

  ̂⃑| ⃑⟩   ⃑| ⃑⟩ (3.1) 

We have the orthonormality and completeness conditions given as: 

 ⟨ ⃑| ⃑ ⟩    ( ⃑   ⃑ ) (3.2) 

 
∫   ⃑| ⃑⟩⟨ ⃑|   ̂ 

 

(3.3) 

where   ̂ is the unit operator. 

So every state vector | ⟩ can be expanded as: 

 
| ⟩  (∫   ⃑| ⃑⟩⟨ ⃑|* | ⟩  ∫   ⃑  ( ⃑)| ⃑⟩ 

 

(3.4) 

where   ( ⃑) denotes the components of | ⟩ in the | ⃑⟩ basis: 

 ⟨ ⃑| ⟩   ( ⃑) (3.5) 

This is known as the wave function for the state vector | ⟩  in position space. 

According to the probabilistic interpretation of Born, the quantity 

 
⟨ | ⟩  ⟨ | (∫   ⃑| ⃑⟩⟨ ⃑|* | ⟩  ∫    ( ⃑) ( ⃑)   ⃑  ∫| ( ⃑)|    ⃑ 

 

(3.6) 

represents the probability of finding the system in the volume element     ⃑, while the 

integrand | ( ⃑)|  is the probability density. 
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3.1.2 Wave function in momentum space 

The basis | ⃑⟩  of the momentum space is obtained from the eigenstates of the 

momentum operator  ̂⃑: 

  ̂⃑| ⃑⟩   ⃑| ⃑⟩ (3.7) 

where  ⃑  is the momentum vector. Just like in the position representation, the 

orthonormality and the completeness conditions of momentum space basis | ⃑⟩ are: 

⟨ ⃑| ⃑ ⟩    ( ⃑   ⃑ ) and 
∫   ⃑| ⃑⟩⟨ ⃑|   ̂ 

 

(3.8) 

Expanding | ⟩ in this basis, we obtain: 

 
| ⟩  (∫   ⃑| ⃑⟩⟨ ⃑|* | ⟩  ∫   ⃑  ( ⃑)| ⃑⟩ 

(3.9) 

where   ( ⃑) denotes the components of | ⟩ in the | ⃑⟩ basis: 

 ⟨ ⃑| ⟩   ( ⃑) (3.10) 

This is known as the wave function for the state vector | ⃑⟩ in momentum space. 

 

3.1.3 Transformation relation of wave function in position and momentum space 

Let’s have  ( )  ⟨ | ⟩ and  ( )  ⟨ | ⟩ (3.11) 

and retain the meaning of wave function in one-dimension, we can have: 

 
 

 ( )  ⟨ | ⟩  ⟨ | (∫  | ⟩⟨ |* | ⟩ 
 

  
 ∫  ⟨ | ⟩ ( ) 

 

(3.12) 

and  
 

 ( )  ⟨ | ⟩  ⟨ | (∫  | ⟩⟨ |* | ⟩ 
 

  
 ∫  ⟨ | ⟩ ( ) 

 

(3.13) 

Note that, the different in the transformation is at the ⟨ | ⟩ and ⟨ | ⟩. Let’s introduce 

 
⟨ | ⟩  

 

√   
     ⁄  

 

(3.14) 

so as to complete the transformation as Fourier transformation: 

 
 ( )  

 

√   
∫ ( )     ⁄    

 

(3.15) 

and 
 ( )  

 

√   
∫ ( )      ⁄    

 

(3.16) 
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Equation (3.15) and (3.16) are the wave function in the position space and the wave 

function in the momentum space, respectively. 

To understand the normalized factor 
 

√   
, multiply both side of (3.15) with 

 

√   
∫        ⁄    to give: 

 

√   
∫ ( )       ⁄     ∫    ( ) (

 

√   
∫  (    )  ⁄   * 

 

 
 ∫    ( ) (    ) 

 

   (  ) (3.17) 

Change the variable    as   to give back  ( )  
 

√   
∫ ( )      ⁄   . 

 

3.2 Schrödinger Equation in Position space 

3.2.1 Understand Schrödinger equation from classical wave 

For a classical one-dimensional wave equation: 

    (   )

   
   

   (   )

   
 

 

(3.18) 

Having general solution in the form: 

 (   )     (     )  

     (      )  ⁄  (3.19) 

where        and     ;   a constant. 

Now, we take the derivatives: 

  (   )

  
  

  

 
 (   ) 

and    (   )

   
  

  
 

  
 (   ) 

 

(3.20) 

for a classical relation   
  

 

  
;   (   )  

  
 

  
 (   ), equate relation in (3.20): 

 
 

 

 

  (   )

  
  

  

  

   (   )

   
 

 

(3.21) 

multiply both side by       to give: 

 
  

  (   )

  
  

  

  

   (   )

   
 

 

(3.22) 

This is the time-dependent Schrödinger equation of a free particle in one-dimension. 

For a particle moving in a potential force field where we have: 

  ⃗( ⃑  )    ⃗⃗⃗  ( ⃑  ) (3.23) 
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so that the total energy is given as the sum: 

 
  

 ⃑ 

  
  ( ⃑  ) 

 

(3.24) 

while in one-dimension, 
  

  
 

  
  (   ) 

 

(3.25) 

thus, 
  (   )  *

  
 

  
  (   )+ (   ) 

 

(3.26) 

We can write in operator form for (3.26) according to (3.22) as: 

 
  

  (   )

  
 * 

  

  

  

   
  (   )+ (   ) 

 

(3.27) 

In three-dimensional case, we change the operator accordingly for which: 

 ⃑    ̂    ̂    ̂ and  
 ⃗⃗⃗ 

 

  
 ̂  

 

  
 ̂  

 

  
 ̂ 

 

 
  

  ( ⃑  )

  
 * 

  

  
 ⃗⃗⃗   ( ⃑  )+ ( ⃑  ) 

 

(3.28) 

The time-dependent Schrödinger equation. 

From the understanding of classical regime, the total energy is called the Hamiltonian 

with criteria that the energy force field is conserved. By operator  ̂: 

 
 ̂   

  

  
 ⃗⃗⃗   ( ⃑  ) 

 

(3.29) 

we have: 
  

  ( ⃑  )

  
  ̂ ( ⃑  ) 

 

(3.30) 

 

3.2.2 Stationary state 

Stationary state is when the probability density and other observables are constant in 

time. That is, in a case available, although  (   )   ( )      ⁄  does depends on 

time, but the probability density based on Born’s interpretation: 

 | (   )|             ⁄        ⁄  | ( )|  does not. 

So, the interpretation allows us to have   independent of time and as well, to write 

 (   )   ( ) ( )  and solve Schrödinger equation by method of separation of 

variables. First we take the derivatives for 
  

  
  

  

  
 and 

   

     
   

   . 

Substitute into equation (3.27) with    (   ) is now    ( ) to have: 
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(3.31) 

Divide by   :   

 

  

  
  

  

  

 

 

   

   
     

 

(3.32) 

We introduce the separation constant   such that the equation can be re-written in two 

separated ordinary differential equation: 

  

 

  

  
   

 

(3.33) 

and 
 

  

  

   

   
       

 

(3.34) 

Solve (3.33) as ∫   
  

 
 ∫    to give the general solution as  ( )        ⁄ . This 

is why we have  (   )   ( ) ( )   ( )      ⁄ . 

While equation (3.34) is called the time-independent Schrödinger equation. 

 

3.2.3 The conservation of probability 

The conservation of probability is a crucial feature of the Schrödinger equation; it 

allows a normalized wave function to stay normalized at the progress of time. To 

prove it, let’s consider a normalized wave function: 

 
⟨ (   )| (   )⟩  ∫| (   )|      

 

(3.35) 

To observe the wave function evolve in time, we take the time derivatives of: 

  

  
∫| (   )|    ∫

 

  
| (   )|    

 

(3.36) 

By the product rule, 

  

  
| |  

 

  
(   )    

  

  
 

   

  
  

 

(3.37) 

Now, the Schrödinger equation says that 

   

  
 

  

  

   

   
 

 

 
   

 

(3.38) 

and taking the complex conjugate of (3.38) to give 
   

  
 as: 

    

  
  

  

  

    

   
 

 

 
    

 

(3.39) 

So,  

  
| |  

  

  
(  

   

   
 

    

   
 )  

 

  
[
  

  
(  

  

  
 

   

  
 *] 

 

(3.40) 

We can rewrite the equation as: 
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   (   )

  
 

   (   )

  
   

 

(3.41) 

where   (   )    (   ) (   ) is called the probability density; 

while  (   )  
  

  
. 

   

  
     

  
/ is the probability current density. 

Equation (3.41) is interpreted as the conservation of probability. 

Come back to equation (3.36), we’ll see that when evaluate throughout the entire  , 

 
∫

 

  
| (   )|   

  

  

 [
  

  
(  

  

  
 

   

  
 *]

  

  

 
 

(3.42) 

but  (   )  must goes to zero as      so that  (   )  remain normalized. It 

follows that 

  

  
∫| (   )|      

 

(3.43) 

and hence, the integral is a constant in time, which is consistence with (3.35). 

 

3.2.4 Expectation values and the time-rate change of the system 

For a particle in state | (   )⟩, the expectation value of any observable,  (   ) is: 

 
〈 〉  ⟨ | ̂| ⟩  ∫  ̂| (   )|    

 

(3.44) 

Taking the time derivative of (3.44): 

  

  
〈 〉  

 

  
⟨ | ̂| ⟩  ⟨

  

  
| ̂| ⟩  ⟨ |

  ̂

  
| ⟩  ⟨ | ̂|

  

  
⟩ 

 

(3.45) 

 We can have 
  

  
 from the Schrödinger equation (3.30):   

  ( ⃑  )

  
  ̂ ( ⃑  ). So, 

  

  
〈 〉   

 

  
⟨ ̂ | ̂| ⟩  

 

  
⟨ | ̂| ̂ ⟩  ⟨ |

  ̂

  
| ⟩ 

 

(3.46) 

But  ̂ is hermitian, so ⟨ ̂ | ̂| ⟩  ⟨ | ̂ ̂| ⟩ and ⟨ | ̂| ̂ ⟩  ⟨ | ̂ ̂| ⟩, hence 

  

  
〈 〉  

 

 
〈[ ̂  ̂]〉  〈

  ̂

  
〉 

 

(3.47) 

This relation shows the time evolution of expectation values; two important result 

stem from this relation. 

First, if   does not depend explicitly on time, then the term   ̂   ⁄  vanish, and 

 

  
〈 〉  

 

 
〈[ ̂  ̂]〉. 
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Second, besides not depending explicitly on time, if the  ̂ commutes with  ̂, then 〈 〉 

is constant in time. 

 

3.3 Schrödinger Equation in Momentum space 

3.3.1 Momentum and position operator in momentum space 

The momentum operator: 
 

〈 〉  ⟨ | ̂| ⟩  ∫  (   
 

  
*    

 

 
 ∫  (   

 

  
* [

 

√   
∫      ⁄   ]    

 

 
 

 

√   
∫  [∫ (   ) (

  

 
*      ⁄   ]    

 

 
 ∫  (

 

√   
∫       ⁄   *    

 

 
 ∫  (

 

√   
∫       ⁄   *

 

   
 

 
 ∫       

 

So, in position space, 
 ̂     

 

  
 

 

(3.48) 

while in momentum space,  ̂    (3.49) 

For position operator: 
 

〈 〉  ⟨ | ̂| ⟩  ∫       
 

 
 ∫(

 

√   
∫        ⁄   *      

 

 
 ∫  (

 

√   
∫        ⁄   *    

 

 
 ∫  (  

 

  
* (

 

√   
∫       ⁄   *    

 

 
 ∫  (  

 

  
*    

 

So, in position space,  ̂    (3.50) 

while in momentum space, 
 ̂    

 

  
 

 

(3.51) 
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3.3.2 Transforming the Schrödinger equation into momentum space 

From the time-dependent Schrödinger equation in position space, 

 
  

  (   )

  
  

  

  

   (   )

   
  ( ) (   ) 

(3.52) 

multiply both side by 
 

√   
      ⁄  and integrate over the entire   to obtain: 

 

√   
∫   

  

  
      ⁄   

 

  

  
 

√   
∫ ( 

  

  

   

   
   ) (      ⁄ )  

 

  

 
 

 
   

 

  
(

 

√   
∫        ⁄   

 

  

) 
 

 
   

 

  
 (   ) 

 

(3.53) 

For the spatial term: 

 

√   
∫ ( 

  

  

   

   
)       ⁄   

 

  

   
  

  

 

√   
∫

   

   
      ⁄   

 

  

 
 

 
  

  

  

 

√   
∫  

  

   
(      ⁄ )  

 

  

 
 

; IBP 

 
 

  

  
(

 

√   
∫        ⁄   

 

  

) 
 

 
 

  

  
 (   ) 

 

(3.54) 

where we have used two integration by parts to move the derivatives onto the 

exponential term. This is true as long as  (   ) is linearly dependent with       ⁄ . 

Next, the potential energy function can be expanded in Taylor series to yield 

 

√   
∫ (  )(      ⁄ )  

 

  

  ∑
 ( )( )

  

 

√   
∫          ⁄   

 

  

 

   

 
 

 
 ∑

 ( )( )

  

 

√   
∫  (  

 

  
*
 

(      ⁄ )  
 

  

 

   

 
 

 
 ∑

 ( )( )

  
(  

 

  
*
 

 (   )

 

   

 
 

 
  (  

 

  
* (   ) 

 

(3.55) 

Combine results from (3.53), (3.54) and (3.55) to give time-dependent Schrödinger 

equation in momentum space as: 
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 (   )  

  

  
 (   )   (  

 

  
* (   ) 

 

(3.56) 

if the potential function does not depend explicitly on time, we can write 

  (   )   ( )      ⁄  (3.57) 

and obtain in the same way as in position space, the time-independent Schrödinger 

equation in momentum space: 

 
  ( )  

  

  
 ( )   (  

 

  
* ( ) 

 

(3.58) 
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CHAPTER 4 

APPLICATIONS OF SCHRÖDINGER EQUATION 

 

4.1 The Free Particle 

4.1.1 The free particle in position space 

Due to  ( )    for all  , we are left with time-independent Schrödinger equation in 

the form: 

 
 

  

  

   ( )

   
   ( ) 

 

(4.1) 

    ( )

   
  

   

  
 ( )      ( ) 

 

(4.2) 

for   
 

 
√   . Since we don’t have any boundary of wall to restrict the value of  , 

the general solution shall take the form: 

  ( )               (4.3) 

where   and   are two arbitrary constants. 

By include the time progression term,      , the wave function become: 

 (   )     (     )      (     ) ;      
  

  
 

    

  
 

 
   

 (   
   

  
 *

   
  (   

   

  
 *

   so that   
   

  
 

 
     .  

  
  

 /       .  
  
  

 /
 

(4.4) 

here    .  
  

  
 /

 represent a wave travelling to    direction, while     .  
  

  
 /

 

represent a wave travel to    direction. In other form, we rewrite: 

 
  (   )      .  

  
  

 /
 with    

 

 
√    (4.5) 

Here we have three subtleties. 

First, the wave has well defined momenta and energy: 

      implies that      

  
    

  
 

 

implies that      

while   and   can take on any value,      and     . 
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Second subtlety, the speed of the quantum wave,       
 

 
 

  

  
 and the speed of 

the particle,           
 

 
 

  

 
       . Evidently the particle travels twice as fast 

as the wave that represents it. 

Third, the wave function is not normalizable, ∫   
     

 

  
 | | ∫   

 

  
   is 

not square integrable, which represent not a physical entity. 

For that, the free particle cannot have definite energy, but a continuous range. The 

general solution now takes the form of wave packets: 

 
 (   )  

 

√  
∫ ( ) 

 (   
   

  
 *
   

 

(4.6) 

where  ( ) is the amplitude of the wave packet and is given by the Fourier transform 

of  (   ) as in: 

 
 ( )  

 

√  
∫ (   )        

 

(4.7) 

in order to fit the initial wave function: 

 
 (   )  

 

√  
∫ ( )       

 

(4.8) 

 

4.1.2 The free particle in momentum space 

In momentum space, time-dependent Schrödinger equation reads: 

 
  

 

  
 (   )  

  

  
 (   )   (  

 

  
* (   ) 

(4.9) 

but, since  .  
 

  
/   , we are left with: 

 
  

 

  
 (   )  

  

  
 (   ) 

  

(4.10) 

 
  

  (   )

 (   )
 

  

  
     ∫

  

 
  ∫

   

   
   

  

(4.11) 

 
   (   )   

   

   
    

  

(4.12) 

 
 (   )     

    
    

where       

(4.13) 
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4.2 Simple Harmonic Oscillator 

4.2.1 Simple harmonic oscillator in position representation 

The potential for stationary state in this case will be  ( )  
 

 
     . So, the 

problem is to solve the time-independent Schrödinger equation of the form: 

 
 

  

  

   

   
 

 

 
          

 

(4.14) 

By change of variable:    √
  

 
  ;    √

  

 
  ; 

  

  
 

  

  

  

  
 √

  

 

  

  
 

;    

   
 

 

  
(√

  

 

  

  
)
  

  
 

  

 

   

   
 

We have: 
 

  

  

  

 

   

   
 

 

 
   

 

  
       

 

(4.15) 

Multiply by  
 

  
 and by putting   

  

  
, we get: 

    

   
 (   

  

  
*  (    )  

(4.16) 

Start by taking the region of large   (large  ) which will dominate over  , then 

   

       . The general solution is approximated as: 

  ( )        ⁄       ⁄  (4.17) 

Since     ⁄    as    , take    , then we will have the asymptotic form of: 

  ( )  (    )     ⁄  (4.18) 

To take out the exponential part, take 

  ( )   ( )     ⁄  (4.19) 

to have:   

  
 

  

  
     ⁄         ⁄  

 

    

   
 

   

   
     ⁄    

  

  
     ⁄        ⁄          ⁄  

 

Then, the Schrödinger equation becomes: 

    

   
   

  

  
              

 

    

   
   

  

  
 (   )    

 

(4.20) 

Use power series method to solve, in which 
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 ( )  ∑   
 

 

   

 

 

;   

  
 ∑    

   

 

   

 

 

;    

   
 ∑ (   )   

   

 

   

 

 
∑ (   )   

   

 

   

  ∑    
 

 

   

 (   )∑   
 

 

   

   
 

 
∑(   )(   )     

 

 

   

  ∑    
 

 

   

 (   )∑   
 

 

   

   
 

So,     (   )     and (   )(   )          (   )    . 

We obtain:    
   

 
   and      

      

(   )(   )
  . 

Thus, by now we should have: 

 ( )            
     

     

  (      
     

   )  (       
      

  )  

       ( )      ( ) (4.21) 

However, when   get larger, the recursion relation becomes:      
 

 
  , along with 

the approximate solution:    
 

(  ⁄ ) 
, and this yield: 

 
 ( )   ∑

 

(  ⁄ ) 
    ∑

 

  
        

 
(4.22) 

This is the asymptotic behavior that we don’t want. To solve this unwanted, the power 

series must terminate at some highest  , call it   such that the recursion formula give 

      . Thus, we must have        for           

Then, the energy must have values: 

 
   (  

 

 
*   

 

;           

 

(4.23) 

Beyond the value of  , the recursion relation now becomes:      
  (   )

(   )(   )
  . 

if    , pick      and     to give   ( )     and hence: 

  ( )     
    ⁄  

for    , pick      and     so   ( )      and hence: 

  ( )      
    ⁄  

for    ,     yields         and     gives     , so   ( )    (     ) 

and   ( )    (     )     ⁄  and carry on. 

They are so called Hermite polynomials,   ( ). With proper normalized stationary 

states for the harmonic oscillator is: 
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  ( )  .

  

  
/

 
  

√    
  ( ) 

    ⁄  
 

(4.24) 

 
  ( )  .

  

  
/

 
  

√    
  (√

  

 
 )       

   
 

(4.25) 

 

4.2.2 Simple harmonic oscillator in momentum representation 

We know in momentum representation, the momentum and position operators are: 

 ̂    and  
 ̂    

 

  
 

so, the Hamiltonian operator in momentum space shall takes the form: 

 
 ̂  

 ̂ 
 

  
 

 

 
    ̂ 

  
  

  
 

 

 
     

  

   
 

(4.26) 

At the same time, the time-independent Schrödinger equation can be rewritten as: 

 
(
  

  
 

 

 
     

  

   
)     

 

(4.27) 

divide both sides of the equation by     , and further rearrange to give: 

 
 

  

  

   

   
 

  

     
  

 

    
  

 

(4.28) 

 
 

  

  

   

   
 

 

 
  ̃      ̃  

 

(4.29) 

where we have introduced: 

 ̃  
 

   
 

and  
 ̃  

 

    
 

 

(4.30) 

Look into the similarity in the form as compared to the time-independent Schrödinger 

equation (4.14). Thus, the solution can be stated readily exploiting the earlier results. 

The energy according to (4.23), are: 

 
 ̃  (  

 

 
*  ̃ 

 

;           
 

(4.31) 

or, by the relations (4.30), 
   (  

 

 
*   

 

;           
 

(4.32) 

Also, directly from (4.25), the wave function for simple harmonic oscillator in 

momentum space should be: 
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  ( )  (
  ̃

  
*

 
  

√    
  (√

  ̃

 
 )    ̃  

   

 

(4.33) 

Again by (4.30), 

 
  ( )  (

 

    
*

 
  

√    
  (√

 

   
 )     

     
 

(4.34) 

 

4.3 Hydrogen Atom 

4.3.1 Schrödinger equation in spherical coordinates 

For a general statement in term of Hamiltonian operator: 

 
  

 

  
   ̂  

 

(4.35) 

where 
 ̂      

 ⃑ 

  
    

  

  
     

 

(4.36) 

So, we have in term of laplacian    
  

    
  

    
  

    : 

 
  

 

  
   

  

  
       

 

(4.37) 

and in spherical coordinate, what matters is the form of laplacian, where 

 
   

 

  

 

  
(  

 

  
*  

 

      

 

  
(    

 

  
*  

 

       
(

  

   
) 

 

(4.38) 

with         ,              ,                   

 

Now, we can solve the Schrödinger equation by separation of variables: 

  (     )   ( ) (   ) (4.39) 

  

  
  

  

  
 

,   

  
  

  

  
 

and    

   
  

   

   
 

Substitute back into     
  

  
       to get 

     
  

  
*
 

  

 

  
(   

  

  
*  

 

      

 

  
(     

  

  
*  

 

       

   

   
+ 

 

     (4.40) 

divide by     , multiply by 
  

  , leave   to right hand side and move all to left: 
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(   )  

 

   

 

  
(  

  

  
*

  
 

       

 

  
(    

  

  
*  

 

        

   

   
 

 

 

 

(4.41) 

Multiply both sides with    and further re-arrange to give a clear separation: 

 

 

 

  
(  

  

  
*  

    

  
(   )   

 

 
*

 

    

 

  
(    

  

  
*  

 

     

   

   
+ 

 

(4.42) 

Equate the equation to a separation constant  (   ) so as to separate it into two 

differential equation of the form: 

  

 

 

  
(  

  

  
*  

    

  
(   )   (   ) 

 

(4.43) 

  

 
*

 

    

 

  
(    

  

  
*  

 

     

   

   
+    (   ) 

 

(4.44) 

 

4.3.2 Spherical harmonics 

Solve the angular equation (4.44) of  (   ) first. Multiply        to get: 

 
    

 

  
(    

  

  
*         (   )   

   

   
 

 

(4.45) 

and introduce separation of variable second time as:  (   )   ( ) ( ); 

  

  
  

  

  
 

;    

   
  

   

   
 

Substitute back into (4.45) and divide by     : 

     

 

 

  
(    

  

  
*   (   )        

 

 

   

   
    

(4.46) 

Meanwhile, use yet another separation constant    to give: 

     

 

 

  
(    

  

  
*   (   )          

 

(4.47) 

and    

   
      

 

(4.48) 

For  ( ), the general solution take the form: 

#  ( )     
       

           (4.49) 

by letting   take both   . To be precise, consider the periodic boundary condition of 

 ( )   (    ) ;           (    )  or in other words,         and thus 
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While for  ( ), rearrange equation (4.47) to get: 

 
    

 

  
(    

  

  
*  , (   )         -    

 

(4.50) 

use the change of variable       , then          ; 
  

  
       and 

  

  
  

  

  

  

  
      

  

  
 

 

  
(      

  

  
*            

  

  
      

 

  

  

  
 

 
        

  

  
      

 

  
(
  

  
*
  

  
 

 
        

  

  
      

   

   
 

Then, 
        

  

  
      

   

   
 , (   )         -    

 

(4.51) 

divide by            to yield: 

 
(    )

   

   
   

  

  
 * (   )  

  

    
+     

 

, with | |    
 

(4.52) 

This is associated Legendre equation and the general solution shall take the form: 

  ( )      
 ( )      

 ( ) (4.53) 

Since   
 ( ) is not bounded at both end, the term is vanished by taking     , so 

  ( )      
 ( ) (4.54) 

where   
 ( ) is the associated Legendre function, defined as: 

 
  

 ( )  (    )| |  ⁄ (
 

  
*

| |

  ( ) 
 

(4.55) 

with   ( )  is   th Legendre polynomial and is convenient to define by Rodrigues 

formula: 

 
  ( )  

 

    
(
 

  
*
 

(    )  
 

(4.56) 

from which     and | |    to have   
   . So, the range of   and   are as: 

          ;                            (4.57) 

While in term of  , we substitute back        into (4.54), 

#  ( )      
 (    ) (4.58) 

 

Collectively, we have: 
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  (   )         
 (    ) (4.59) 

where       are to determine by the initial normalization condition: 

 
∫| |    ⃑    

with  (     )   ( ) (   )  

 and    ⃑               (4.60) 

So that: 
∫| |     ∬| |            

(4.61) 

It eases if we normalize  ( ) and  (   ) separately as: 

∫ | |     
 

 

   
 

(4.62) 

and 
∫ ∫ | |         

 

   

  

   

   
 

(4.63) 

For  (   ), the normalized function are given as: 

# 

  
 (   )   √

(    )

  

(  | |) 

(  | |) 
      

 (    ) 

 

(4.64) 

and are known as spherical harmonics, where   {
(  )      
                

  

They are also orthogonal: 

 
∫ ∫ ,  

 (   )- 0   
  

(   )1         
 

   

  

   

   
 

(4.65) 

 

4.3.3 The radial equation 

Now, solve the radial equation of  ( ) from (4.43), multiply by  : 

  

  
(  

  

  
*  

     

  
, ( )   -   (   )  

 

(4.66) 

We can simplify further by change of variable:  ( )    ( ) such that   
 

 
 

  

  
 

 
  
  

  

  
 

 

’ 

 

  
(  

  

  
*   

   

   
 

 
 
   

   
 

    

  
, ( )   -   (   )

 

 
 

 

(4.67) 

   

  

   

   
       

  

  

 (   )

  
  

 

(4.68) 

 
 

  

  

   

   
 *  

  

  

 (   )

  
+      

 

(4.69) 

This is the radial equation with the effective potential: 



30 
 

 
       

  

  

 (   )

  
 

 

(4.70) 

contain an extra centrifugal term: 
  

  

 (   )

  . 

Meanwhile, the normalization condition becomes: 

 
∫ | |   

 

 

   
 

(4.71) 

 

4.3.4 The radial equation for hydrogen 

For hydrogen atom, the Coulombic potential energy is: 

 
 ( )   

  

    

 

 
 

(4.72) 

then the radial equation becomes: 

 
 

  

  

   

   
 * 

  

    

 

 
 

  

  

 (   )

  
+      

 

(4.73) 

let   
√    

 
 by taking into consideration that     for bound state, 

 

    
  

   
. 

Divide (4.73) by  , we have: 

  

  

   

   
 *  

 (   )

    
 

   

         
+   

(4.74) 

By pointing out that      and 
   

       
   , then we have: 

    

   
 *  

  

 
 

 (   )

  
+   

(4.75) 

We come to have asymptotic form of the solutions, 

as    ,    

   
   

 

(4.76) 

and as    ,    

   
 

 (   )

  
  

 

(4.77) 

which gives different solutions. 

To peel off the asymptotic behavior, introduce a new function  ( ), such that: 

  ( )          ( ) (4.78) 

first,   

  
      [(     )   

  

  
] 

 

(4.79) 
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and     

   
      ,*        

 (   )

 
+    (     )

  

  

  
   

   
- 

 

 

 

(4.80) 

In term of  ( ), the radial equation becomes: 

 
 
   

   
  (     )

  

  
 ,    (   )-    

 

(4.81) 

To solve this, we use power series method by letting: 

 
 ( )  ∑   

 

 

   

 
 

(4.82) 

   

  
 ∑    

   

 

   

 ∑(   )     
 

 

   

 
 

; 

   

   
 ∑ (   )     

   

 

   

 

Get back to the equation to yield: 

 
∑ (   )     

 

 

   

  (   )∑(   )     
 

 

   

  ∑    
   

 

   

 ,    (   )-∑   
 

 

   

   

 

 

 

 

(4.83) 

Equating the terms of like powers yields: 

 (   )      (   )(   )          ,    (   )-     

 
     ,

 (     )    

(   )(      )
-    

-the recursion 

relation 

 

(4.84) 

Let     , and we have obtain    for large   as: 

     
  

 (   )
   

 

(   )
   

; thus  
   

  

  
  

that give us 
 ( )   ∑

  

  
  

 

   

      
 

(4.85) 

and hence  ( )          (4.86) 

Which again unbounded at large  . There’s only one way to solve the dilemma, there 

must be some maximum       such that:          . 

Then from the recursion relation,  (        )      , and define 

           ,               (4.87) 
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to give      , where   is the principle quantum number. 

But, we come to note from the earlier substitutions that 

 
   

    

  
  

 

  

    

      

 

  

   

       
  

   

     
     

  
 

(4.88) 

So that the allowed energy are: 

 
    

   

      
     

 [ 
 

   
(

  

    
)

 

]
 

  
 

  

  
 

 

(4.89) 

the Bohr formula, where          . 

Also, by taking       into    
   

       
, we find that: 

  
   

       
 

 

  
 

where  
  

     
 

   
        

 

(4.90) 

is the Bohr radius. Follow from relation, we have      
 

  
 

 

Finally, we come back to  ( )  
 ( )

 
 and by index   and  , 

# 
   ( )  

 

 
        ( ) 

 

(4.91) 

with  ( )  ∑    
  

    (4.82) and      
 (       )

(   )(      )
   (4.84). 

 

4.3.5 Hydrogen wave function 

Now, the wave function for hydrogen should take the form 

     (     )     ( )  
 (   ) (4.92) 

where             

                

                             

 

4.3.6 Ground state wave function for hydrogen atom 

The ground state is of the case    , 

 
    

 

   
(

  

    
)

 

          
 

(4.93) 

From           ,        and    , also affect    . 

So, the ground state wave function will be: 
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     (     )     ( )  
 (   ) (4.94) 

The coefficients    vanishes at first term,     , so  ( )     which makes 

 
   ( )  

 

 
.
 

 
/ (    ⁄ )   

  

 
    ⁄  

 

(4.95) 

Normalize it as: 
∫ |   |

     
 

 

 
|  |

 

  
∫      ⁄     

 

 

   
 

(4.96) 

Solve by integration by parts, 

∫        ⁄   
 

 

   
   

 
     ⁄ |

 

 

 ∫        ⁄   
 

 

 
 

 

 
    .

  

 
/      ⁄ |

 

 

 ∫
  

 
     ⁄   

 

 

 
 

 

 
   

  

 
. 

 

 
/      ⁄ |

 

 

 
 

 
 

  

 
 

 

(4.97) 

So, 
|  |

 

  .
  

 
/   ; |  |

  
 

 
 and    

 

√ 
. While   

  √
 

  
 to make: 

 
    (     )  

 

√  

 

√  
    ⁄  

    ⁄

√   
 

 

(4.98) 

 

4.3.7 Ground state wave function of hydrogen atom in momentum space 

In position space, the ground state wave function of hydrogen atom is given as in 

(4.98):     (     )  
 

√   
    ⁄ , while in momentum space, it should be the 

Fourier transform: 

 
    (     )  

 

√(   ) 
∫    ⃑  ⃑  ⁄     (     )   ⃑ 

 

(4.99) 

By considering the spherical coordinate system,    ⃑               and taking 

 ⃑   ⃑         , we would have simplify: 

 

    (     )  
 

√(   ) 
∫

 

√   
    ⁄           ⁄               

 

 
 

 

√ (    ) 
∫     ⁄     

 

 

∫           ⁄       
 

 

∫   
  

 

 
 

(4.100) 

Now, solving the integral separately: 
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∫   
  

 

    
 

∫           ⁄       
 

 

   ∫   
   
 

   
  

 

 
by letting        ;  

            

 
  

 

   
[   

   
 

 ]
 

  

 
 

 
 

 

   
( 

   
    

   
 * use      

 

  
(      ) 

 
 

  

  
   .

  

 
/ 

 

we should now have: 

 

    (     )  
 

 

 

√(   ) 
∫     ⁄   

   .
  
 
/

  
  

 

 

 

 

 
 

√  

  

 

√(  ) 
∫      ⁄    .

  

 
/  

 

 

 
 

(4.101) 

Expand    .
  

 
/  

 

  
. 

  

    
  

 /, the integral part is: 

 

  
∫     .

 
 
  

 
 
/  

 

 

 
 

  
∫     .

 
 
  

 
 
/  

 

 

 
 

  
*∫   

 .
 
 
  

 
 
/ 
  

 

 

 ∫   
 .

 
 
  

 
 
/ 
  

 

 

+ 

From general mathematics, by solving integration by part, 

∫       
 

 
    ∫

 

 
    

    

 
 

   

  
    (

 

 
 

 

  
* 

and by taking     .
 

 
  

 

 
/, a mere constant here, the integral continue as: 

  

  
*    (

 

  
 

 

  
 )      (

 

  
 

 

  
 )+

 

 

  
 

  
*

 

  
  

 

  
 + 

 

  
 

 

  
[

 

.
 
 
  

 
 
/
  

 

.
 
 
  

 
 
/
 ] 

 

  

 
 

  
0

 
   

  

   
   
  

 
 
   

  

   
   
  

(
 
   

  

  *
 1 

 

  
 

  

  
 

.  

   
  

  
/
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 ( 

  

  
*

 

 
  

 

.  {  
 
}
 
/
  

 

  
 ( 

    

 
)

 

0  (  
 
)
 
1
  

 

Collectively, we come to have: 

 

 
    (     )  

√  

  

 

√(  ) 
( 

    

 
)

 

0  (  
 
)
 
1
  

 

 
    (     )  

 

 
(
  

 
*

 
 

 

0  (  
 
)
 
1
  

 

(4.102) 

This is in consistent with the ground state wave function of hydrogen atom in 

momentum space from: Am. J. Phys. 63, 710 (1995) - Barry R. Holstein 

Where  

    ( )  √
 

 
(  )

 
 

    

,  
    - 

 

(4.103) 

and  

    ( )  
 

(  ) 
∫    ( )  

  ⃑  ⃑   ⃑  (
    

 
)

 
 

      

(4.104) 

Here, taking by the transformation,    
 

 
 and for 

  
 

  
 

   

    ;   
  

    

     
  

 

  . 

 
    ( )  (

 

   
*

 
   

 (  
     )

  
 √  

 
 

(      ) 
 

 

(4.105) 

Multiply by 
(   )

 
 

(  ) 
 .

 

  
/
 
 
 yield: 

 
    ( )  

 

 
(  )

 
 

 

,  (  ) - 
 

when      

(4.106) 
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CHAPTER 5 

THE PICTURES OF QUANTUM MECHANICS 

 

5.1 Time Evolution of State 

5.1.1 Time evolution operator 

To obtain the quantum state at any time  , namely | ( )⟩ based on the initial state 

| (  )⟩, we use the relation: 

 | ( )⟩   ̂(    )| (  )⟩ with      (5.1) 

where  ̂(    ) is known as the time evolution operator or propagator. From (5.1), 

note that 

  ̂(     )   ̂ (5.2) 

recall that  ̂ is the unit operator as suggested in (2.67) by an identity matrix. 

Now, to find  ̂(    ) , we substitute (5.1) into the time-dependent Schrödinger 

equation (3.30): 

 
  

 

  
( ̂(    )| (  )⟩)   ̂( ̂(    )| (  )⟩) 

 

(5.3) 

or,   ̂(    )

  
  

 

 
 ̂ ̂(    ) 

 

(5.4) 

Solve by assume that the Hamiltonian is independent of time, and take into account 

for the initial condition (5.2): 

 
∫

  ̂(    )

 ̂(    )
  

 

 
 ̂ ∫   

 

 
   ̂(    )   

 

 
 ̂    

 

 
   ̂(     )   

 

 
 ̂           

 

 
 ̂   

 

  ̂(    )     (    ) ̂  ⁄  (5.5) 

and, we can get back to (5.1) as: 

 | ( )⟩     (    ) ̂  ⁄ | (  )⟩ (5.6) 

The operator  ̂(    )     (    ) ̂  ⁄  represents a finite time translation. Notice that it 

is also a unitary operator, since  ̂ (    )   ̂  (    )    (    ) ̂  ⁄   ̂(    ) which 

automatically reserve for  ̂(    ) ̂
 (    )   ̂(    ) ̂

  (    )   ̂. 
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5.1.2 The Ehrenfest’s theorem 

Ehrenfest’s theorem tells us that expectation values obey classical laws. To illustrate, 

we take the time evolution of expectation values for position and momentum operators, 

 ̂⃑ and  ̂⃑ of a particle moving in a potential  ( ). 

Based on equation (3.47) which says for any operator  ̂: 

  

  
〈 〉  

 

 
〈[ ̂  ̂]〉  〈

  ̂

  
〉 

 

(5.7) 

The terms 〈
  ̂

  
〉    here, since both  ̂⃑ and  ̂⃑ are explicitly independent of time,  . For 

 ̂⃑, taking in a single dimension, we have: 

  

  
〈 〉  

 

 
〈[ ̂  ̂]〉 

 

(5.8) 

Now, we know that  ̂  
 ̂ 

 

  
  ( ), and together with the canonical  commutator 

relations: 

 ,     -   ,     -        (5.9) 

We can show that: 

[ ̂  ̂]  0.
 ̂ 

 

  
  ( )/   ̂1 

 

 
 

 

  
[ ̂ 

  ̂   ̂ ̂ 
 ]  , ( )  ̂- 

 

 
 

 

  
* ̂ , ̂  ̂-  , ̂  ̂- ̂ + 

 

 
  

  

 
 ̂  

 

(5.10) 

So,  

  
〈 〉  

 

 
〈[ ̂  ̂]〉  

 

 
〈 

  

 
 ̂ 〉  

〈  〉

 
 

 

(5.11) 

In three dimensional case, we simply have: 

  

  
〈 ⃑〉  

〈 ⃑〉

 
 

 

(5.12) 

 

In other hand, working the same way for  ̂⃑: 

  

  
〈  〉  

 

 
〈[ ̂  ̂ ]〉 

 

(5.13) 
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[ ̂  ̂ ]  
  

  

  

   
(  

 

  
 *     

 

  
    

 

  
(
  

  

  

   
 )    

 

  
(  ) 

 
 

   

  

  

   
     

 

  
  

   

  

  

   
    

  

  
     

 

  
  

 

 
   

  

  
  

 

which gives 
[ ̂  ̂ ]    

  

  
 

 

(5.14) 

and thus,  

  
〈  〉  

 

 
〈[ ̂  ̂ ]〉  

 

 
〈  

  

  
〉  〈 

  

  
〉 

 

(5.15) 

In three dimension, 

  

  
〈 ⃑〉  〈  ⃗⃑⃗ 〉 

 

(5.16) 

The two results, (5.12) and (5.16) imply that the expectation values obey Newton’s 

second law. 

 

5.1.3 The Virial theorem 

Virial theorem is a relation between mean kinetic energy and mean potential energy. 

Now, we solve for  

  

  
〈   〉  

 

 
〈[ ̂  ̂ ̂ ]〉 

 

(5.17) 

[ ̂  ̂ ̂ ]  
  

  

  

   
(   

  

  
*      

  

  
    

 

  
(
  

  

   

   
)     

 

  
(  ) 

 
 

   

  
( 

   

   
  

   

   
)      

  

  
 

   

  
 
   

   
     

  

  
    

  

  
  

 
 

   

 

  

   
     

  

  
  

 
   (

  

 

  

   
  

  

  
)  

So, 

 

  
〈   〉  

 

 
〈[ ̂  ̂ ̂ ]〉  

 

 
〈  (

  

 

  

   
  

  

  
)〉  〈 

  

 

  

   
  

  

  
〉 

 

(5.18) 

or,  

  
〈   〉   〈 〉  〈 

  

  
〉 

 

(5.19) 

While in three dimension, 
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〈 ⃑ ⃑〉   〈 

  

  
  〉  〈 ⃑   ⃗⃑⃗ 〉   〈 〉  〈 ⃑   ⃗⃑⃗ 〉 

 

(5.20) 

For stationary state, 
 

  
〈 ⃑ ⃑〉   , so 

  〈 〉  〈 ⃑   ⃗⃑⃗ 〉 (5.21) 

 

 

5.2 The Schrödinger Picture 

In Schrödinger picture, state vectors depend explicitly on time, but operators do not: 

 
  

 

  
| ( )⟩   ̂| ( )⟩ 

 

(5.22) 

where | ( )⟩ denotes the state of the system in the Schrödinger picture. As stated 

before in 5.1.1, | ( )⟩   ̂(    )| (  )⟩     (    ) ̂  ⁄ | (  )⟩. Let     : 

 | ( )⟩       ̂  ⁄ | ( )⟩ (5.23) 

And we have specific that  ̂(    ) is unitary and satisfy the properties: 

  ̂(    ) ̂
 (    )   ̂ (5.24) 

  ̂(   )   ̂ (5.25) 

  ̂ (    )   ̂  (    )   ̂(    ) (5.26) 

  ̂(     ) ̂(     )   ̂(     ) (5.27) 

 

 

5.3 The Heisenberg Picture 

In Heisenberg   picture, operators depend explicitly on time, but state vectors do not. 

The Heisenberg picture is obtained from the Schrödinger picture by applying  ̂ on 

| ( )⟩ : 

 | ( )⟩   ̂ ( )| ( )⟩  | ( )⟩ (5.28) 

where | ( )⟩ is given by (5.23) while  ̂ ( ) can be obtained (5.5) by setting     : 

 ̂ ( )   ̂ (      )      ̂  ⁄ . So, we can actually write (5.28) as: 

 | ( )⟩      ̂  ⁄ | ( )⟩ (5.29) 

As | ⟩  is frozen in time, we have 
 | ⟩ 

  
  . However, the expectation value of any 

operator  ̂ in the state | ( )⟩ evolves in time: 

〈 〉  ⟨ ( )| ̂| ( )⟩  ⟨ ( )|    ̂  ⁄  ̂     ̂  ⁄ | ( )⟩  
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  ⟨ ( )| ̂ ( )| ( )⟩  

     ⟨ ( )| ̂ ( )| ( )⟩
 

 (5.30) 

where  ̂ ( ) is given by: 

  ̂ ( )   ̂ ( ) ̂ ̂( )      ̂  ⁄  ̂     ̂  ⁄  (5.31) 

Notice that the left hand side of equation (5.30) is of Schrödinger picture while the 

right hand side is of Heisenberg picture; this shows that the expectation value of any 

operator is the same in both pictures. As well, both the Schrödinger picture and 

Heisenberg picture coincide at    , since | ( )⟩  | ( )⟩ and  ̂ ( )   ̂. 

 

5.3.1 The Heisenberg equation of motion 

Assume that  ̂ is independent explicitly on time: 
  ̂

  
  , we have: 

  ̂ ( )

  
  

  ̂ ( )

  
 ̂ ̂( )   ̂ ( ) ̂

  ̂( )

  
 

 

 
 

 

 
 ̂ ̂ ( ) ̂ ̂( )  

 

 
 ̂ ( ) ̂ ̂ ̂( ) 

 

 
 

 

 
 ̂ ̂ ( )  

 

 
 ̂ ( ) ̂ 

 

 
 

 

 
[ ̂  ̂ ( )] 

 

(5.32) 

where we have  ̂( )       ̂  ⁄  from (5.5) and  ̂ ( )   ̂ ( ) ̂ ̂( )  from (5.31); 

plus for the reason  ̂( ) and  ̂ commute:  ̂ ̂( )   ̂( ) ̂ in the second line. 

We can re-arrange (5.32) to give the Heisenberg equation of motion as: 

 
  

  ̂ ( )

  
 [ ̂ ( )  ̂] 

 

(5.33) 

 

 

5.4 The Interaction Picture (or) the Dirac Picture 

In this picture, both state vectors and operators evolve in time. Therefore we need to 

find the equation of motion for both the state vectors and operators. 

 

5.4.1 Equation of motion for the state vectors 

In interaction picture, we define the state vectors based on Schrödinger picture: 

 | ( )⟩      ̂  ⁄ | ( )⟩ (5.34) 
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Again, at    , | ( )⟩  | ( )⟩. The time evolution of | ( )⟩ is governed by the 

Schrödinger equation (5.22) with  ̂   ̂   ̂ where  ̂  is time independent, but  ̂ 

may depend on time. 

To find the time evolution of | ( )⟩ , take the time derivative of (5.34): 

 | ( )⟩ 
  

 
  ̂ 

 
    ̂  ⁄ | ( )⟩      ̂  ⁄ (

 

  
| ( )⟩* 

 

  
 | ( )⟩ 

  
    ̂ | ( )⟩      ̂  ⁄ (  

 

  
| ( )⟩* 

 

    ̂ | ( )⟩      ̂  ⁄  ̂| ( )⟩ (5.35) 

Since  ̂   ̂   ̂, the last term of (5.35) is: 

    ̂  ⁄  ̂| ( )⟩      ̂  ⁄  ̂ | ( )⟩      ̂  ⁄  ̂| ( )⟩  

   ̂  
   ̂  ⁄ | ( )⟩  (    ̂  ⁄  ̂     ̂  ⁄ )    ̂  ⁄ | ( )⟩  

   ̂ | ( )⟩   ̂ ( )| ( )⟩  (5.36) 

where  ̂ ( )      ̂  ⁄  ̂     ̂  ⁄  (5.37) 

and  ̂  commute with     ̂  ⁄  since any operator commute with itself. 

With this, we can re-write (5.35) as: 

  
 | ( )⟩ 

  
   ̂ | ( )⟩   ̂ | ( )⟩   ̂ | ( )⟩  

 

(5.38) 

or simply 
  

 | ( )⟩ 
  

   ̂ ( )| ( )⟩  
 

(5.38) 

This is the Schrödinger equation in the interaction picture. It shows that the time 

evolution of the state vector is governed by the interaction  ̂ ( ). 

 

5.4.2 Equation of motion for the operators 

The interaction representation of any operator  ̂ is given, as shown in (5.37), in term 

of its Schrödinger representation by: 

  ̂ ( )      ̂  ⁄  ̂     ̂  ⁄  (5.40) 

To obtain the equation of motion, approach the same as in 5.3.1; Take the time 

derivative of  ̂ ( ) and as mentioned in 5.2 that, 
  ̂

  
  . 

  ̂ ( )

  
  (

 

  
    ̂  ⁄ *  ̂     ̂  ⁄      ̂  ⁄  ̂ (

 

  
     ̂  ⁄ * 

 

 
 

 

 
 ̂  

   ̂  ⁄  ̂     ̂  ⁄  
 

 
    ̂  ⁄  ̂ ̂  

    ̂  ⁄  
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 ̂  ̂ ( )  

 

 
 ̂ ( ) ̂  

 

 
 

 

 
[ ̂   ̂ ( )] 

 

(5.41) 

where we have used (5.40) and the relation:  ̂  
    ̂  ⁄       ̂  ⁄  ̂  as we did 

previously in (5.36). Re-arrange the equation to give: 

 
  

  ̂ ( )

  
 [ ̂ ( )  ̂ ] 

 

(5.42) 

This equation is similar to the Heisenberg equation of motion (5.33), except that  ̂ is 

replaced by  ̂ . The basic difference between the Heisenberg and interaction pictures 

can be inferred from a comparison of (5.29) with (5.34) and (5.31) with (5.40): in the 

Heisenberg picture it is  ̂ that appears in the exponents, whereas in the interaction 

picture it is  ̂  that appears. 
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vii 
 

SUMMARY 

 

The major focus of this study is about the representations in quantum 

mechanics. Most of which are well known and easily found in various texts, but not 

all. However the variations are prove to be equivalent or in some case mutually 

related. 

In comparison, Heisenberg matrix formulation offers a greater generality, yet 

it gives no visual idea about the structure of atom, and being less intuitive than 

Schrödinger wave mechanics. Both have their own stand point when come to solve 

certain situation. Matrix mechanics is difficult to solve in relatively easy problem, but 

become practical in solving harmonic oscillator and angular momentum. While in 

solving the Schrödinger equation, we might come to a very complex differential 

equation; the complexity in solving the differential equation depends entirely on the 

form of potential. 

In the other hand, we see that position representation is widely adopted in 

most introductory quantum mechanics text, but we barely come across momentum 

representation. The observables (   ) in position space are of the form: .     
 

  
/, 

and in momentum space: .   
 

  
  /. We already come across the equivalence of 

each representation through the Fourier transformation. We choose between each 

representation based on the ease in solving the situation. 

Last and the most important one, the pictures of quantum mechanics based on 

the time evolution scale of state vectors (and thus wave functions) and operators. 

Besides the traditional Schrödinger picture, Heisenberg picture and interaction picture 

are obtain from Schrödinger picture with modification using time evolution operator. 
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