Hamiltonian of a system of N electrons, K nuclei, with Z, charges:

N K N ) K N )
= Z Z 11 e 1 2 2 Z,e
i=1 n=1 4n80 2 i,j=1;i#j |ri _rj| 4meo n=1i=1 |Ai _Rn|
N 2
4 11 Z ZnZye
41e, 2 IR, —R| (4.1)

i,j=1;i%j
Index i for electrons, n for nuclei, m = electron mass, M, = nuclei masses.

First 2 terms represent kinetic energies of electrons and nuclei.
3" term = Coulomb repulsion between electrons.
4™ term = Coulomb attraction between electrons and nuclei.

Last term = Coulomb repulsion between nuclei.

Born-Oppenheimer approximation separate the degrees of freedom connected with the motion of
the nuclei from those of the electrons, justified with the fact that the nuclei are much heavier that
they move much slower than electron. Hamiltonian (4.1) reduced to Born-Oppenheimer Hamiltonian:
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is a Hamiltonian for the electrons in the field generated by a static conflguratlon of nuclei, and a

separate Schroédinger equation for the nuclei in which electronic energy enters as a potential.

Further approximation reduce the 2" term of (4.2) to an uncoupled Hamiltonian, in which the
interaction of one electron with the remaining ones is incorporated in an averaged way into a
potential felt by the electron. The independent-particle (IP) Hamiltonian:
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Within Born-Oppenheimer approximation, by restricting the electronic wave function to a simple
form, we find an approximate independent-particle Hamiltonian (4.3). The coordinates of the wave
function are x; and x,, x; = (73, s;). As electrons are fermions, we use the following anti-symmetric
trial wave function for ground state:

(4.4)

1
W(xy, X)) = W(y, 81572, 52) = ¢(F1)¢(F2)ﬁ [a(s1)B(s2) — a(sz)B(s1)]

where a(s) = spin up, 8(s) = spin down, ¢ is an orbital which share the same basis.



Born-Oppenheimer Hamiltonian for the helium atom reads:
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Acting on (4.4),
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multiply both side by ¢* (rl) and integrate over 7, :
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All the integrals which yield constant multiple of ¢(7;) are absorbed into E’. Hereby, we have used
¢*(7)¢p(7;) = 6;;. Equation (4.7) is self-consistent.

Now, beyond restricting the wave function to be uncorrelated; by writing it as a linear combination
of 4 fixed, real basis functions.
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o) = z Coxp(T) (4.12)
p=1
leads directly from (4.7) that:
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Cp, arereal as )(p(r) are real.

Multiply x, (77) from the left and integrate over 7 :
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with h,, = | 1V2 2
pa = <Xp 20 77 Xq) (4.15a)
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Qpras = | Pty () i PG a15h)
Spq = ()(p|)(q) overlap matrix (4.15c¢)

At this stage, we shall take Gaussian s-basis function:

xp(P) = e~ " (4.16)
27.[5/2
(ap + aq)(ar +ag)Jap +ag + ar + ag
a; = 0.298073, a, = 1.242567 , a3 = 5.782948, a, = 38.474970

while  Qprgs =

(4.17)



Program flow

- The 4 X 4 matrices hy,q , Spq and 4 X 4 X 4 X 4 array Qp,¢s are calculated.

pq’

- Initial values for Cp are chosen.

- Use C-values to construct matrix F:

Foo = hyy + Z c,C
pq pq L QprqsCrCs (4.18)
always check that g,q=1 CpSpqCq = 1, as the normalisation. (4.19)
- Solve for generalised eigenvalue problem
FC=E'SC (4.20)

For ground state, the vector Cis the one corresponding to the lowest eigenvalue.
- Solution C from (4.20) is used to build matrix F again and so on.
- Ground state energy can be found by evaluating the expectation value of the Hamiltonian for the

ground state:

E; = ZZ CpCqhpq + Z QprqsCpCqCrCs (4.21)
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Particle-exchange operator, P,;
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For the case of an independent-particle Hamiltonian, which is a sum of one-electron Hamiltonian as
in (4.3), we can write the solution of the Schrédinger equation as a product of one-electron states:

WXy, s Xy) = Y1 (1) - Py (Xy) (4.24)
The one-electron states Y, are eigenstates of one-particle Hamiltonian.

Of course, the same state as (4.24) but with the spin-orbitals permuted, is a solution too, as are
linear combinations of several such states,
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P is a permutation operator which permutes the coordinates of the spin-orbitals only, and not their
labels, or acting on labels only (acting on one at a time).

We can write (4.26) in the form of a Slater determinant:

Pi(x) P () - Pu(xy) (4.27)
l/)1(x2) lpz(xz) le(.J?N)
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Fock extended the Hartree equation by taking anti-symmetry into account.
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The operator F is caIIed the Fock operator. The forth term is the same as the third, with two spin-

¢k(x)

orbital labels k and [ interchanged and a minus sign in front resulting from the anti-symmetry of the
wave function — it is called the exchange term.

Itis clear that (4.31) is a nonlinear equation, which must be solved by a self-consistency iterative
procedure analogously to the previous section. Sometimes the name “self-consistent field theory”
(SCF) is used for this type of approach.



Expanding the spin-orbitals ¥ as linear combinations of a finite number of basis states y;,:
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Then (4.30) assumes a matrix form

FCk = GkSCk (4.56)
where S is the overlap matrix for the basis used.

The general form of the Fock operator is

F=h+]-K (4.59)
with
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The sum over [ is over all occupied Fock levels. The Coulomb and exchange operators, written in
terms of the orbital parts only, read
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In contrast with (4.60), the sums over [ run over half the number of electrons because the spin
degrees of freedom have been summed over. The Fock operator now becomes
F@@) =h@) +2JG) - K@) (4.62)

The corresponding expression for the energy is found analogously and is given by
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For a given basis x;, (), we obtain the following matrix equation, which is known as the Roothaan
equation:

FCk = ESCk (464)
§ is the overlap matrix for the orbital basis ¥, () and the matrix F is given by
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where  h,, = (p|h|q) =fd TXp (1) ——V —Zﬁ Xq(™) (4.66)
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k labels the orbitals ¢, and p, g, and s label the basis functlons



The density matrix for restricted Hartree-Fock is defined as

qu =2 Z Cpkch*
k

(4.68)
Using (4.68), the Fock matrix can be written as
1
qu = hpq + Ez P, (2(prlglgs) — (prlglsq)) (4.70)
s
and the energy is given by
1 1
E= Z quhpq + 2 Z quPsr ((prlglqs) - E(PT|9|SQ)) (4.71)
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Gaussian function:
L = \2
Xa(®) = Py (x,y, 2)e=*(""Ra) (4.78)

which is centred around a nucleus located at ﬁA. The polynomials Py, contain the angular-dependent
part of the orbitals, which is given by the spherical harmonics Y,%(G, ¢). For | = 0, these functions
are spherically symmetric, 1s-orbital is given as

YO (F) = ea(F-Ra)’ (4.81)
For [ = 1, there are three p-orbitals,

1o @9 (F) = xe—a(F-Fa)’ (4.82)

The two-electron integral

(1s,a,4;1s,B,Blg|1s,y,C; 15,6, D)
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