Molecular Dynamics Simulation Phase Coexistence Curve and Properties of Lennard-Jones Fluid

THEORY LAB, SCHOOL OF PHYSICS **U N I V E R S I T I S A I N S M A L A Y S I A**

7 J U N E 2 0 1 3

Molecular Dynamics Simulation

Atomic

Simulation of a collection of atoms

• Infinite system

Periodic boundary condition

• Classical approach

 Each atom is treated as a simple structureless particle with wavelength that is much smaller than the particle separation.

Deterministic technique

Initial set of positions and velocities is given.

Equations of motion are integrated to track the atoms.

Periodic Boundary Condition

- An atom that leaves the simulation region through a particular bounding face immediately reenters the region through the opposite face.
- Minimum separation rule
	- For the equations of motion to be consistent, particles should only be allowed to interact once.

Reduced Units

- Usually denoted by superscript of $*$.
- Simulation results obtained in reduced units can be translated back into real units.

$$
U_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]
$$

where r is the separation of the particles.

Newtonian Mechanics

From the Lennard-Jones Potential

$$
f_{ij}(r_{ij}) = -\frac{\partial U}{\partial r_{ij}} = \frac{r_{ij}}{r_{ij}^2} \left\{ 48\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \frac{1}{2} \left(\frac{\sigma}{r_{ij}} \right)^6 \right] \right\}
$$

Newton's Third Law

$$
\boldsymbol{f}_{ij}=-\boldsymbol{f}_{ji}
$$

Velocity Verlet Algorithm

Update positions

$$
r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{f(t)}{2m}(\Delta t)^2
$$

Half-update velocities

$$
v\left(t+\frac{\Delta t}{2}\right) = v(t) + \frac{f(t)}{2m}\Delta t
$$

Compute forces

$$
r(t + \Delta t) \rightarrow f(t + \Delta t)
$$

Half update velocities

$$
v(t + \Delta t) = v\left(t + \frac{\Delta t}{2}\right) + \frac{f(t + \Delta t)}{2m}\Delta t
$$

Truncation of Interactions

Truncation and Shift

$$
U^{tr-sh}(r) = \begin{cases} U_{LJ}(r) - U_{LJ}(r_c), & r \le r_c \\ 0, & r > r_c \end{cases}
$$

No discontinuities in the intermolecular potential.

• Correction terms

To reduce the systematic error in the simulation

$$
U^{tail} = \frac{8}{3}\pi\rho\epsilon\sigma^3 \left[\frac{1}{3}\left(\frac{\sigma}{r_c}\right)^9 - \left(\frac{\sigma}{r_c}\right)^3\right]
$$

$$
\Delta P^{tail} = \frac{16}{3}\pi\rho^2\epsilon\sigma^3 \left[\frac{2}{3}\left(\frac{\sigma}{r_c}\right)^9 - \left(\frac{\sigma}{r_c}\right)^3\right]
$$

Temperature and Pressure

• Instantaneous temperature

Equipartition theorem

$$
\frac{3}{2} N k_B T = \frac{1}{2} \sum_{i=1}^{N} m_i |\mathbf{v}_i|^2
$$

• Instantaneous pressure

$$
P = \rho T + \frac{vir}{V}
$$

where V is the volume of system and vir is the virial:

$$
vir = \frac{1}{3} \sum_{i>j} f(r_{ij}) \cdot r_{ij}
$$

Berendsen Thermostat and Barostat

Berendsen Thermostat

$$
\lambda = \left[1 + \frac{\Delta t}{\tau_T} \left(\frac{T}{T_0} - 1\right)\right]^{1/2}
$$

Berendsen Barostat

$$
\mu = \left[1 - \frac{\Delta t}{\tau_P} (P - P_0)\right]^{1/3}
$$

Temperature-Quench Molecular Dynamics

- Locating fluid phase coexistence through single canonical simulation in which the temperature is changed in a single time step, which is known as quenching.
- At this unstable state, the single phase is spontaneously separated into domains of coexisting phases.

Temperature-Quench Molecular Dynamics

• Interface Detection

- Divide the system into small sub-cells.
- Local density for each sub-cell is determined.

• Eliminate cells that containing interface

- Only collect histogram data in sub-cells that contain entirely one phase.
- Define the number of neighbours a molecule will have within a fixed radius, i.e. upper (CNU) and lower (CNL) bound coordination numbers.
- In vapour-liquid equilibria, particles in interface have neighbours lesser than particles in vapour phase, and greater than particles in the vapour phase.
- Sub-cells that contain more than 15% "interfacial" particles are then excluded from the histogram count.

Temperature-Quench Molecular Dynamics

• Determination of Equilibrium Properties

- Plot histogram of frequency versus density.
- Two obvious peaks, corresponding to the vapour and liquid average densities
- By using maximum likelihood analysis, density of each phase is determined by weighted average of the histogram method.

Phase Coexistence Curve

 Vapour liquid coexistence curve for LJ system with 32,000 particles in 120,000-step-simulation with $r_c^* = 5$.

Comparison with GEMC

 Comparison by Using Different Total Simulation Steps

• Comparison by Using Different Methods

 Johnson's equation of state (blue), grand-canonical transitionmatrix Monte Carlo and histogram re-weighting (black) and TQMD (red).

Radial Distribution Function

- Gives the probability of finding a particle in the distance *r* from another particle.
- The neighbours around each atom or molecule are sorted into distance bins.
- The number of neighbours in each bin is averaged over the entire simulation.
- The radial distribution function is usually plotted as a function of the interatomic separation *r*.
	- A peak indicates a particularly favored separation distance for the neighbors to a given particle.

Radial Distribution Function

- At small *r*, the radial distribution function is zero.
	- Effective width of the atoms, since they cannot approach any more closely.
- A number of obvious peaks appear.
	- The atoms pack around each other in 'shells' of neighbors.
- At high temperature the peaks are broad, at low temperature they are sharp.
	- Thermal motion,

Image by MIT OpenCourseWare.

Properties of LJ Fluid Abrupt changes in gradient of graphs Potential energy vs temperature Pressure vs temperature Potential energy Pressure -5.0 10 -5.5 -6.0 -6.5 $\overline{2}$ Temperature Temperature $rac{1}{25}$ 1.0 1.5 2.0 $\overline{1.5}$ 2.0 2.5 1.0 Compression factor vs temperature Compression factor 5 ٦ D 1 Temperature 1.0 1.5 2.0 2.5

Relation between Temperature and Density

• NVT ensemble

 \circ Simulation is repeated for various values of density.

• Phase diagram of temperature against density

Relation between Pressure and Temperature

• NPT ensemble

 \circ Simulation is repeated for various values of pressure.

• Phase diagram of pressure against temperature

Relation between Pressure and Volume

 Simulation is repeated for various values of temperature by scaling the density for each temperature.

Compression Factor

$$
Z = \frac{PV}{Nk_B T}
$$

Describe the deviations of gases from ideality.

 When a gas obeys ideal gas law, $Z = 1$.

Conclusion

• Phase coexistence curve is successfully generated by using TQMD.

- Results obtained made good agreement with the results obtained from the literatures.
- TQMD can be a suitable method to study the phase equilibria of an unfamiliar system.
- Properties of LJ fluid is studied and phase diagrams are successfully generated.
	- The system behaves like an ideal gas when the system has a large volume at high temperature.
	- The system built fulfils the requirement to build a model of the real system.

The End

SOON YEE YEEN

THEORY LAB, SCHOOL OF PHYSICS **UNIVERSITI SAINS MALAYSIA**

7 J U N E 2 0 1 3